Mathematical Engineering
of Deep Learning
Book Draft

Benoit Liquet, Sarat Moka and Yoni Nazarathy

February 28, 2024



Contents

Preface - DRAFT

1

Introduction - DRAFT

1.1 The Age of Deep Learning . . . . . . .. .. .. ... ... ..
1.2 A Taste of Tasks and Architectures . . . . . . . . ... ... ... .. ...
1.3 Key Ingredients of Deep Learning . . . . . . . . . .. ... ... .......
1.4 DATA, Data, datal . . . . ... .. ... ...
1.5 Deep Learning as a Mathematical Engineering Discipline . . . . . . . . ...
1.6 Notation and Mathematical Background . . . . . .. ... ... ... . ...
Notes and References . . . . . . . . . . . ..

Principles of Machine Learning - DRAFT

2.1 Key Activities of Machine Learning . . . . . . .. .. .. .. ... ... ...
2.2 Supervised Learning . . . . . . ..o
2.3 Linear Models at Our Core . . . . . . .. . o it
2.4 Tterative Optimization Based Learning . . . . . . . ... .. ... ... ...
2.5 Generalization, Regularization, and Validation . . ... .. ... ... ...
2.6 A Taste of Unsupervised Learning . . . . . . ... ... ... ........
Notes and References . . . . . . . . . . . .

Simple Neural Networks - DRAFT

3.1 Logistic Regression in Statistics . . . . . . .. ... ... 0o,
3.2 Logistic Regression as a Shallow Neural Network . . . ... ... ... ...
3.3  Multi-class Problems with Softmax . . . . .. ... ... ... .. ......
3.4 Beyond Linear Decision Boundaries . . . . . .. ... .. ... .. ......
3.5 Shallow Autoencoders . . . . . . . . . . .. ...
Notes and References . . . . . . . . . .. . L

Optimization Algorithms - DRAFT

4.1 Formulation of Optimization . . . . ... ... ... ... ... .......
4.2 Optimization in the Context of Deep Learning . . . . ... ... ... ...
4.3 Adaptive Optimization with ADAM . . .. ... ... ... ... .....
4.4 Automatic Differentiation . . . . . . ... oL oL o
4.5 Additional Techniques for First-Order Methods . . . . . . ... ... .. ..
4.6 Concepts of Second-Order Methods . . . . . .. .. ... .. ... ......
Notes and References . . . . . . . . . . . ..

Feedforward Deep Networks - DRAFT

5.1 The General Fully Connected Architecture . . . . . . . . .. ... ... ...
5.2 The Expressive Power of Neural Networks . . . . . ... ... .. ... ...
5.3 Activation Function Alternatives . . . . . .. .. .. ... ...
5.4 The Backpropagation Algorithm . . . .. .. ... ... ... ... ... .
5.5 Weight Initialization . . . . . . . .. .. .. o

w

—

17
20
23
25

27
27
32
39
48
52
62
72

75
7
82
86
95
99
111

113
113
120
128
135
143
152
164

167
167
173
180
184
192



Contents

5.6 Batch Normalization . . . . . . .. ... ... . L oL
5.7 Mitigating Overfitting with Dropout and Regularization . . . . .. ... ..
Notes and References . . . . . . . . . . . ..

6 Convolutional Neural Networks - DRAFT
6.1 Overview of Convolutional Neural Networks . . . . . ... ... .......
6.2 The Convolution Operation . . . . . . . . ... ... ... ... .. ....
6.3 Building a Convolutional Layer . . . . . . ... ... ... ... ...
6.4 Building a Convolutional Neural Network . . . . .. ... ... ... ....
6.5 Inception, ResNets, and Other Landmark Architectures . . ... ... ...
6.6 Beyond Classification . . . . . . . . . . . . ...
Notes and References. . . . . . . . . . . . e

7 Sequence Models - DRAFT
7.1 Overview of Models and Activities for Sequence Data . . . . . . .. ... ..
7.2 Basic Recurrent Neural Networks . . . . . . . . .. .. ... ... ......
7.3 Generalizations and Modifications to RNNs . . . . . . ... ... ......
7.4 Encoders Decoders and the Attention Mechanism . . . . .. ... ... ...
7.5 Transformers . . . . . . . . .
Notes and References . . . . . . . . . . . . . . .

8 Specialized Architectures and Paradigms - DRAFT
8.1 Generative Modelling Principles . . . . . . .. ... .. ... ... ......
8.2 Diffusion Models . . . . . . . ...
8.3 Generative Adversarial Networks . . . . . . . ... ... ... L.
8.4 Reinforcement Learning . . . . . . . . . .. . L o oo
8.5 Graph Neural Networks . . . . . . . . ... .. .
Notes and References . . . . . . . . . . . . . . .. ..

Epilogue - DRAFT

A Some Multivariable Calculus - DRAFT
A.1 Vectors and Functions in R™ . . . . . . . . . .. . ... ... ... ... ..
A2 Derivatives . . . . . . . e
A.3 The Multivariable Chain Rule . . . . . . . ... .. ... ... ........
A4 Taylor’s Theorem . . . . . . . . . . . . o i

B Cross Entropy and Other Expectations with Logarithms - DRAFT
B.1 Divergences and Entropies . . . . . . . . . ... oo oo
B.2 Computations for Multivariate Normal Distributions . . . . . ... .. ...

Bibliography

Index



A Some Multivariable Calculus - DRAFT

This appendix provides key results and notation from multivariable calculus. It is not an
exhaustive summary of multi-variable calculus but rather contains the results needed for the
contents of the book.

A.1 Vectors and Functions in R”

Denote the set of all the real numbers by R and the real coordinate space of dimension n by
R™. Each element of R™ is an n dimensional vector, interpreted as a column of the form

uy
U= (Ul .. Up) =[up -+ ] =

Un

The FEuclidean norm of u € R™, measuring the geometric length of u and also known as the
Lo norm, is

n 1/2
lullz = VaTu= <Z u) .
=1

Here the scalar u' v is the inner product between two vectors u,v € R™. A normalized form
of the inner product, called the cosine of the angle between the two vectors, sometimes

simply denoted cos 8, is,

’U,TU

cos = ————. Al
Tl Tl (A1)

The Euclidean norm is a special case of the L, norm which is defined via,

n 1/p

Jull, = (Zlui|p> ;

i=1
for p > 1. When p in || - ||, is not specified, we interpret || - || as the Ly norm.
Focusing on the Ly norm and the inner product u'v, the Cauchy-Schwartz inequality is,

T
o] < lull[|v]l, (A.2)

where the two sides are equal if and only if u and v are linearly dependent (that is, u = cv
for some ¢ € R). Also, the Fuclidean distance (or, simply the distance) between u and v is

357



A Some Multivariable Calculus - DRAFT

defined as

n 1/2
Ju o]l = (Zw >> .

i=1
An important consequence of the Cauchy-Schwartz inequality is that the Euclidean norm
satisfies the triangle inequality: For any u,v € R™,

[+ vl < lull + [[v]]. (A.3)
To see this, observe that

lu+ol* = flull® + [[o]]* + 2uTv
< Ml + o]l + 2lful o]
2
= ([lull + [lol})”

Convergence of a sequence of vectors can be defined via scalar converge of the distance. That
is, a sequence of vectors u(®,u(?) ... in R” is said to converge to a vector u € R", denoted
via limy_ oo u®) = u, if

lim [Ju® —u| = 0.

k—o0

That is, if for every € > 0 there exists an Ny such that for all & > Ny,
u® — | <e.

Let f : R® — R be an n-dimensional multivariate function that maps each vector u =

(u1,...,u,)" € R™ to a real number. Then, the function is said to be continuous at u € R™
if for any sequence vV, u® ... such that limj_,. u®¥) = u, we have that

lim f(u™®) = f(u).

k—o0

Alternatively, f is continuous at u € R™ if for every € > 0 there exists § > 0 such that

[f(u) = f(v)] <,

for every v € R™ with ||u — v|| < §. Continuity of f at w implies that the values of f at u
and at v can be made arbitrarily close by setting the point v to be arbitrarily close to u.

We can extend the above continuity definitions to multivariate vector valued functions of the
form f :R™ — R™ that map every n dimensional real-valued vector to an m dimensional
real-valued vector. Such functions can be written as

Flw) =[fi(u) - fulw)], (A.4)

where f; : R — R for each ¢ = 1,...,m. Then, the function f is called continuous at wu if
each f; is continuous at u. We say that the function f is continuous on a set U C R™ if f is
continuous at each point in U.
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A.2 Derivatives

A.2 Derivatives

Consider an n-dimensional multivariate function f : R™ — R. The partial derivative a( W of
f with respect u; is the derivative taken with respect to the variable u; while keepmg all
other variables constant. That is,

of(u) . flur, . oywimt,u + Ay, .o un) — f(uw)
= lim .
Bui h—0 h

(A.5)

Suppose that the partial derivative (A.5) exists for all 4 = 1,...,n. Then the gradient of

f at u, denoted by V f(u) or of ( ) , is a concatenation of the partlal derivatives of f with
respect to all its variables, and 1t is expressed as a vector:

of(u) _[0f(w)  af(u)]’
o | ouy  Ou, ' (A-6)

V)=

The gradient V f(u) is a vector capturing the direction of the steepest ascent at u. Further,
h||V f(u)]|] is the increase in f when moving in that direction for infinitesimal distance h.

In some situations, instead of a vector form, variables of the function are represented as a
matrix. In that scenario, multivariate functions are of form f : R™ x R™ — R, that is, f
maps matrices U = (u; ;) of dimension n x m to real values f(U). If the partial derivative

af ( ) exists for alli=1,...,nand j =1,...,m, it is convenient to use the notation af (U)

to denote the collection of the partial derlvatlves of f with respect to all its varlables as a
matrix of the same dimension n X m,

of(U) o0f(U)
8u1,1 tee Sul,m
9f(U)
= : " : . AT
o A (A7)
of(U) of(U)
Oun,1 e OUn,m

Directional Derivatives

The directional derivative of f : R™ — R at u in the direction v € R™ is the scalar defined by

The directional derivative generalizes the notion of the partial derivative. In fact, the partial
derivative %};‘) is the directional derivative at u in the direction of the vector e; which
consists of 1 at the i-th coordinate and zeros everywhere else. This simply follows from the
observation that

f(ul,...,ui_l,ui—|—h,ui+1,...,un) —f(u) 8f(u)

Veif(u) - }1L1—>H10 h - 8ul '
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A Some Multivariable Calculus - DRAFT

As consequence, if the gradient of f exists at u, the directional derivative exists in every
direction v and we have

Vof(u) =v"Vf(u). (A.8)

One way to see (A.8) in the case of continuity of the partial derivatives is via a Taylor’s
theorem based first-order approximation (see Theorem A.1):

flutho) = f(u) + (hv) TV f(u) + O(h?),
where O(h*) denotes a function such that O(h¥)/h* goes to a constant as A — 0. Thus,

flut o) = f(u)
h

Now take the limit & — 0 on both the sides to get (A.8).

=0T Vf(u)+ O(h).

It is useful to note that the directional derivative V, f(u) is maximum in the direction of
the gradient in the sense that for all unit length vectors v, the choice v = V f(u)/||V f (u)]]
maximizes |V, f(u)||. This is a consequence of the Cauchy-Schwartz inequality (A.2):

IVof ()] =0T Vi) < ol V)] = V).
Setting v = V f(u)/||V f(u)| achieves the equality.
Jacobians
The Jacobian is useful for functions of the form f:R™ — R™ as in (A.4) where each f; is

a real-valued function of u. The Jacobian of f at u, denoted by J¢, is the m x n matrix
defined via

Of1(u) 0f1(w)
Ouy Tt Ounp,
Jp(u) = | ¢ R (A.9)
A fm (u) 9fm(u)
ouy e Ounp,
In other words, the i-th row of the Jacobian is the gradient V f;(u). In some situations, it is
convenient to use the notation %(u“) to denote the transpose of the Jacobian of f at u. That
is,
of (u) T
=(J . A.10
L = (5 (w) (4.10)

Hessians

Returning to functions of the form f : R™ — R, to describe the curvature of the function
f at a given v € R", it is important to consider the second-order partial derivatives at u.
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A.2 Derivatives

These partial derivatives are arranged as an n X n matrix, called the Hessian and defined by

r 9%f o f 9%f 7
au% Ouq0us e OuyOun,
oy oy . _&f
2 Juz0u
GVf(u) Ougduy Ouj 20U,
V2f(u) = —2 = , A1l
flw) = =0 S (A1)
_ory o _oir . >’ f
| OupnOuy Oy Ous ouZ
8*f  _ of ( of . . .. .
where 5=—— = 5= ( 52 ). Note that if all the second-order partial derivatives are continuous
10 i j
at u, then the Hessian V2 f(u) is a symmetric matrix. That is, for all i,j € {1,...,n},
0% f B 0% f

8ui8uj o 8uj8u1

This result is known as Schwarz’s theorem or Clairaut’s theorem. Observe that using the
Jacobian, we can treat the Hessian as the Jacobian of the gradient vector. That is,

VQf(u) = Jvf(u).

Certain attributes of optimization problems are often defined via positive (semi) definiteness
of the Hessian V2f(f) at 6. In particular, a symmetric matrix A is said to be positive
semidefinite if for all ¢ € R?,

¢ AY>0. (A.12)

Furthermore, A is said to be positive definite if the inequality in (A.12) is strict for all
¢ € R4\ {0}. Note that the matrix A is called is negative semidefinite (respectively, negative
definite) when —A is positive semidefinite (respectively, positive definite).

Differentiability

A multivariate vector valued function f: R™ — R™ is said to be differentiable at u € R™ if
there is an m X n dimensional matrix A such that

(f(U) —f(v) = A(H-U)II) _o

[l =]

lim

v—U
Here the limit notation v — u implies that the limit exists for every sequence {v(k) ck>1}
such that limj_,. v*) = w. The matrix A is called the derivative. If the function f is
differentiable at u, then the derivative at u is equal to the Jacobian Jy(u). In particular, if
f is a real-valued function (that is, m = 1) and differentiable at u, then the derivative at u
is Vf(u)". If the derivative is continuous on a set 4 C R", we say that f is continuously

differentiable on U, and in that case all the partial derivatives agl(;_‘) are continuous on U.
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A Some Multivariable Calculus - DRAFT

A.3 The Multivariable Chain Rule

Consider a multivariate vector valued function h : R” — R* and a multivariate real-valued
function ¢ : R¥ — R. Suppose that h is differentiable at u € R™ and g is differentiable at
h(u) = [hy(u) -+ hi(uw)]". Let f:R™ — R be the composition f = go h or f(u) = g(h(u)).

For each ¢ = 1,...,n, the multivariate chain rule is,
01(u) _ 0g(h(u) Ohaw) . Og(h(w)) dhn(u)
6’&1 81}1 811,1' avk aui ’

where % denotes the partial derivative of g with respect to the i-th coordinate. Thus,

Of (u) Ohy (u) O (u)
ot = [l 2] gy (h(w).
and combining for all i =1,...,n,

Vf(u) = Jp(u) " Vg (h(u)).

Now consider the case where g is also a multivariate vector valued function. That is, suppose
h : R® — RF is differentiable at u and g : R¥ — R™ is differentiable at h(u). Then the
composition f =goh:R” — R™ is a vector valued function with Jacobian,

Tp(w) = Jy (hw) Ju (u). (A13)

The expression in (A.13) is called the multivariable chain rule. In terms of the notation
(A.10), we may represent the multivariable chain rule as,

-GG - Y-

u onl Lou du  dudh’ (A1)

The Chain Rule for a Matrix Derivative of an Affine Transformation

Let us focus on the case y = g(h(u)) where h: R® — R¥ and g : R¥ — R. Specifically let us
assume that h(-) is the affine function h(u) = Wu + b where W € R¥*" and b € R¥. That is,

y=g(z), with z=Wu+b.

We are often interested in the derivative of the scalar output y with respect to the matrix
W = [w; ;]. This is denoted via 687%/ as in (A.7).

It turns out that we can represent this matrix derivative as the outer product,
Jy oy T
— = —u', A5
ow 0z ( )
oy

where 52 is the gradient of g(-) evaluated at z.

To see (A.15) denote the columns of W via wyy,...,we), each an element of R*, and
observe that,

z=b+ Zuiw(i).
i=1
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A.3 The Multivariable Chain Rule

We may now observe that Jacobian transposed 0z/0w(;) is u;I, where I is the k x k identity
matrix. Hence now, using (A.13), we have,

oy _ 0z oy _ Dy
8w(i) N Gw(i) 0z N laz'

Now we can construct ;—VZ{, column by column,

dy dy dy } _ [ 9y 3y} _9%. 7

W: 811](1) 8’(1}(”) Ud& u"@ _823

Jacobian Vector Products and Vector Jacobian Products

Let f=(f1,...,fm) =hrohp_10---0h; be a composition of L differentiable functions
hi,ha, ..., hg such that hy : R™¢-1 — R™¢ where mg, m1, ..., my are positive integers with
mgo =n and my = m.

Further, to simplify the notation, for each £ =1,..., L, let
ge(u) = by (e (--- (ha(w)) - --)) -
Then, gr(u) = f(u) and by recursive application of (A.13), we obtain
Jp(u) = Jny, (9-1(w) Jny _y (gr—2(w)) -+ I, (). (A.16)

Note that from the definition of the Jacobian, the j-th column of J;(u) is the m dimensional
vector

Of(w) _ (0f(w)  Ofm(u)
8’11,]‘ ( 8uj B 8uj > B Jf(U)ej’

where e; is the j-th unit vector of appropriate dimension. Therefore, using (A.16), for each
7=1,...,n,

0f(u)
S = Ty (91-1(0) | (g2 [y (w)es] - ]| (A.17)
U
That is, for each j =1,...,n, 8515?) can be obtained by recursively computing the Jacobian

vector product given by
Vg 1= Jh[ (gffl(u)) Ve—1,

for £ =1,..., L, starting with vy = e; and go(u) = u.
On the other hand, since the i-th row of Jy(u) is the gradient V f;(u), we have
Vfi(u) = el Jy(u)

= l o [ [ezTJhL (gLfl(u))] Jhp s (gL72(u))} o ‘| I, (u) (A18)
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A Some Multivariable Calculus - DRAFT

That is, for each i = 1,...,m, Vf;(u) can be obtained by recursively computing the vector
Jacobian product given by

U; = U;—l‘]théﬁ»l (gL—f(u)) )

for ¢ =1,..., L, starting with vy = ¢; and go(u) = u.

A.4 Taylor’'s Theorem

Once again consider a multivariate real-valued function f : R™ — R. If all the k-order deriva-
tives of f are continuous at a point u € R™, then Taylor’s theorem offers an approximation
for f within a neighborhood of u in terms of these derivatives. We are particularly interested
in cases where kK = 1 and k = 2 as they are crucial in implementation of, respectively, the
first-order and the second-order optimization methods. It is easy to understand the theorem
when the function f is univariate. Hence we start with the univariate case and then move to
the general multivariate case. We omit the proof of Taylor’s theorem as it is a well known
result that can be found in any standard multivariate calculus textbook.

Univariate Case

Suppose that n = 1, that is, f is a univariate real-valued function. We say that f is k-times
continuously differentiable on an open interval U CRif fis k times differentiable at every

point on U (i.e., the k-th order derivative ];( W exists for all u € U) and f( ) is continuous

on U. If k = 0, we interpret d{fk Y simply as f(w).

Theorem A.1 (Taylor’s Theorem in R). Let f : R — R be k-times continuously
differentiable on an open interval U C R. Then, for any u,v € U,

k .
Z“*” IO L0 (ju— o). (A.19)

7! du®
=0

The polynomial,

b u—v) dif(v
:Z% du(i)7

i=0
appeared in (A.19) is called k-th order Taylor polynomial. Since the remainder
Ri(u) = f(u) — Pe(u) — 0, asz — aq,

f(u) is approximately equal to Py (u) for w within a small neighborhood of a. Particularly, for
a point u near v, Py (u) is linear approximation of f(u) and Pa(u) is quadratic approximation

of f(u).
Multivariate Case

Now consider the multivariate case, that is, f is a multivariate real-valued function. In order
to state Taylor’s theorem for this case, we need some new notion that is relevant only here.
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A.4 Taylor’s Theorem

An n-tuple a = (o, ..., ay) is called multi-index if each «; is a non-negative integer. For a
multi-index «, let

(203

n
|a\:E o, al=agl !, and u® =uft-oouln,
i=1

for any u € R™. Then, the higher order partial derivatives are expressed as

ol £(u,
Daf(u)_ 0 f()

ouft -+ Oup™

We say that f is k-times continuously differentiable on an open set Y C R™ if all the higher
order partial derivatives D f(u) exists and are continuous on U for all multi-index o such
that |o| < k.

Theorem A.2 (Taylor’s Theorem in R"). Let f : R™ — R be a k-times continuously
differentiable on an open set U C R™. Then, for any u,v € U,

fwy= > D"‘f(v)(u;if)aJrO(HuvakH). (A.20)

a:la|<k

The polynomial,

Py = Y Doyt

o!
a:la|<k
is called k-th order Taylor’s polynomial. In particular,
P - D¢ M - —_ T A9
(u) = Y D*f(v) o = f)+(w—v) Via), (A21)

a:lal<1

for w near v, provides linear approximation, also called first-order Taylor’s approximation,
to f(u), while

Py(u) = Z Daf(v)m;ilv)a
ailal<2 ’
= (0) + (u = 0) VI () + 5w =) TV (o)~ v) (A22)

provides quadratic approzimation, also called second-order Taylor’s approzimation, to f(u).

Linear Approximation with Jacobians and Hessians

Consider a differentiable function f : R” — R™ with the m x n Jacobian J;(-). Then with
Theorem (A.2) we may construct a first order linear approximation to f(-) around any
uo € R,

f(u) = fuo) + J¢(uo)(u — uo), (A.23)
where f(u) ~ f(u).
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A Some Multivariable Calculus - DRAFT

Now consider a twice differentiable g : R™ — R with gradient Vg(-) and Hessian matrix
V2g(-). We can set f(u) = Vg(u) with f : R® — R™. Since the Hessian of g(-) is the Jacobian
of f(+), from (A.23) we obtain a first order linear approximation for the gradient around
ug € R, .

Vg(u) = Vg(u) + VZg(uo)(u — up), (A.24)

where Vg(u) ~ Vg(u).
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