
i
i

i
i

i
i

i
i

Mathematical Engineering
of Deep Learning

Book Draft

Benoit Liquet, Sarat Moka and Yoni Nazarathy

February 28, 2024



i
i

i
i

i
i

i
i

Contents

Preface - DRAFT 3

1 Introduction - DRAFT 1
1.1 The Age of Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A Taste of Tasks and Architectures . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Key Ingredients of Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 DATA, Data, data! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Deep Learning as a Mathematical Engineering Discipline . . . . . . . . . . . 20
1.6 Notation and Mathematical Background . . . . . . . . . . . . . . . . . . . . 23
Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Principles of Machine Learning - DRAFT 27
2.1 Key Activities of Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Linear Models at Our Core . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Iterative Optimization Based Learning . . . . . . . . . . . . . . . . . . . . . 48
2.5 Generalization, Regularization, and Validation . . . . . . . . . . . . . . . . 52
2.6 A Taste of Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . 62
Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3 Simple Neural Networks - DRAFT 75
3.1 Logistic Regression in Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Logistic Regression as a Shallow Neural Network . . . . . . . . . . . . . . . 82
3.3 Multi-class Problems with Softmax . . . . . . . . . . . . . . . . . . . . . . . 86
3.4 Beyond Linear Decision Boundaries . . . . . . . . . . . . . . . . . . . . . . . 95
3.5 Shallow Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Optimization Algorithms - DRAFT 113
4.1 Formulation of Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2 Optimization in the Context of Deep Learning . . . . . . . . . . . . . . . . 120
4.3 Adaptive Optimization with ADAM . . . . . . . . . . . . . . . . . . . . . . 128
4.4 Automatic Di�erentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.5 Additional Techniques for First-Order Methods . . . . . . . . . . . . . . . . 143
4.6 Concepts of Second-Order Methods . . . . . . . . . . . . . . . . . . . . . . . 152
Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5 Feedforward Deep Networks - DRAFT 167
5.1 The General Fully Connected Architecture . . . . . . . . . . . . . . . . . . . 167
5.2 The Expressive Power of Neural Networks . . . . . . . . . . . . . . . . . . . 173
5.3 Activation Function Alternatives . . . . . . . . . . . . . . . . . . . . . . . . 180
5.4 The Backpropagation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 184
5.5 Weight Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7



i
i

i
i

i
i

i
i

Contents

5.6 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.7 Mitigating Overfitting with Dropout and Regularization . . . . . . . . . . . 197
Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6 Convolutional Neural Networks - DRAFT 205
6.1 Overview of Convolutional Neural Networks . . . . . . . . . . . . . . . . . . 205
6.2 The Convolution Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.3 Building a Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.4 Building a Convolutional Neural Network . . . . . . . . . . . . . . . . . . . 226
6.5 Inception, ResNets, and Other Landmark Architectures . . . . . . . . . . . 236
6.6 Beyond Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

7 Sequence Models - DRAFT 249
7.1 Overview of Models and Activities for Sequence Data . . . . . . . . . . . . . 249
7.2 Basic Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 255
7.3 Generalizations and Modifications to RNNs . . . . . . . . . . . . . . . . . . 265
7.4 Encoders Decoders and the Attention Mechanism . . . . . . . . . . . . . . . 271
7.5 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

8 Specialized Architectures and Paradigms - DRAFT 297
8.1 Generative Modelling Principles . . . . . . . . . . . . . . . . . . . . . . . . . 297
8.2 Di�usion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
8.3 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . . . 315
8.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
8.5 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Epilogue - DRAFT 355

A Some Multivariable Calculus - DRAFT 357
A.1 Vectors and Functions in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
A.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
A.3 The Multivariable Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 362
A.4 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

B Cross Entropy and Other Expectations with Logarithms - DRAFT 367
B.1 Divergences and Entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
B.2 Computations for Multivariate Normal Distributions . . . . . . . . . . . . . 369

Bibliography 399

Index 401

8



i
i

i
i

i
i

i
i

A Some Multivariable Calculus - DRAFT

This appendix provides key results and notation from multivariable calculus. It is not an
exhaustive summary of multi-variable calculus but rather contains the results needed for the
contents of the book.

A.1 Vectors and Functions in Rn

Denote the set of all the real numbers by R and the real coordinate space of dimension n by
Rn. Each element of Rn is an n dimensional vector, interpreted as a column of the form

u = (u1, . . . , un) = [u1 · · · un]€ =

S

WU
u1
...

un

T

XV .

The Euclidean norm of u œ Rn, measuring the geometric length of u and also known as the
L2 norm, is

ÎuÎ2 =
Ô

u€u =
A

nÿ

i=1
u2

i

B1/2

.

Here the scalar u€v is the inner product between two vectors u, v œ Rn. A normalized form
of the inner product, called the cosine of the angle between the two vectors, sometimes
simply denoted cos ◊, is,

cos ◊ = u€v

ÎuÎ2 ÎvÎ2
. (A.1)

The Euclidean norm is a special case of the Lp norm which is defined via,

ÎuÎp =
A

nÿ

i=1
|ui|

p

B1/p

,

for p Ø 1. When p in Î · Îp is not specified, we interpret Î · Î as the L2 norm.

Focusing on the L2 norm and the inner product u€v, the Cauchy-Schwartz inequality is,

|u€v| Æ ÎuÎÎvÎ, (A.2)

where the two sides are equal if and only if u and v are linearly dependent (that is, u = c v
for some c œ R). Also, the Euclidean distance (or, simply the distance) between u and v is
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A Some Multivariable Calculus - DRAFT

defined as

Îu ≠ vÎ =
A

nÿ

i=1
(ui ≠ vi)2

B1/2

.

An important consequence of the Cauchy-Schwartz inequality is that the Euclidean norm
satisfies the triangle inequality: For any u, v œ Rn,

Îu + vÎ Æ ÎuÎ + ÎvÎ. (A.3)

To see this, observe that

Îu + vÎ
2 = ÎuÎ

2 + ÎvÎ
2 + 2u€v

Æ ÎuÎ
2 + ÎvÎ

2 + 2ÎuÎÎvÎ

= (ÎuÎ + ÎvÎ)2 .

Convergence of a sequence of vectors can be defined via scalar converge of the distance. That
is, a sequence of vectors u(1), u(2), . . . in Rn is said to converge to a vector u œ Rn, denoted
via limkæŒ u(k) = u, if

lim
kæŒ

Îu(k)
≠ uÎ = 0.

That is, if for every Á > 0 there exists an N0 such that for all k Ø N0,

Îu(k)
≠ uÎ < Á.

Let f : Rn
æ R be an n-dimensional multivariate function that maps each vector u =

(u1, . . . , un)€
œ Rn to a real number. Then, the function is said to be continuous at u œ Rn

if for any sequence u(1), u(2), . . . such that limkæŒ u(k) = u, we have that

lim
kæŒ

f(u(k)) = f(u).

Alternatively, f is continuous at u œ Rn if for every Á > 0 there exists ” > 0 such that

|f(u) ≠ f(v)| < Á,

for every v œ Rn with Îu ≠ vÎ < ”. Continuity of f at u implies that the values of f at u
and at v can be made arbitrarily close by setting the point v to be arbitrarily close to u.

We can extend the above continuity definitions to multivariate vector valued functions of the
form f : Rn

æ Rm that map every n dimensional real-valued vector to an m dimensional
real-valued vector. Such functions can be written as

f(u) = [f1(u) · · · fm(u)]€, (A.4)

where fi : Rn
æ R for each i = 1, . . . , m. Then, the function f is called continuous at u if

each fi is continuous at u. We say that the function f is continuous on a set U ™ Rn if f is
continuous at each point in U .
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A.2 Derivatives
Consider an n-dimensional multivariate function f : Rn

æ R. The partial derivative ˆf(u)
ˆui

of
f with respect ui is the derivative taken with respect to the variable ui while keeping all
other variables constant. That is,

ˆf(u)
ˆui

= lim
hæ0

f(u1, . . . , ui≠1, ui + h, ui+1, . . . , un) ≠ f(u)
h

. (A.5)

Suppose that the partial derivative (A.5) exists for all i = 1, . . . , n. Then the gradient of
f at u, denoted by Òf(u) or ˆf(u)

ˆu
, is a concatenation of the partial derivatives of f with

respect to all its variables, and it is expressed as a vector:

Òf(u) = ˆf(u)
ˆu

=
5

ˆf(u)
ˆu1

· · ·
ˆf(u)
ˆun

6€
. (A.6)

The gradient Òf(u) is a vector capturing the direction of the steepest ascent at u. Further,
h||Òf(u)|| is the increase in f when moving in that direction for infinitesimal distance h.

In some situations, instead of a vector form, variables of the function are represented as a
matrix. In that scenario, multivariate functions are of form f : Rn

◊ Rm
æ R, that is, f

maps matrices U = (ui,j) of dimension n ◊ m to real values f(U). If the partial derivative
ˆf(U)
ˆui,j

exists for all i = 1, . . . , n and j = 1, . . . , m, it is convenient to use the notation ˆf(U)
ˆU

to denote the collection of the partial derivatives of f with respect to all its variables as a
matrix of the same dimension n ◊ m,

ˆf(U)
ˆU

=

S

WWWWWWU

ˆf(U)
ˆu1,1

. . . ˆf(U)
ˆu1,m

...
. . .

...

ˆf(U)
ˆun,1

. . . ˆf(U)
ˆun,m

T

XXXXXXV
. (A.7)

Directional Derivatives

The directional derivative of f : Rn
æ R at u in the direction v œ Rn is the scalar defined by

Òvf(u) = lim
hæ0

f(u + hv) ≠ f(u)
h

.

The directional derivative generalizes the notion of the partial derivative. In fact, the partial
derivative ˆf(u)

ˆui
is the directional derivative at u in the direction of the vector ei which

consists of 1 at the i-th coordinate and zeros everywhere else. This simply follows from the
observation that

Òeif(u) = lim
hæ0

f(u1, . . . , ui≠1, ui + h, ui+1, . . . , un) ≠ f(u)
h

= ˆf(u)
ˆui

.
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A Some Multivariable Calculus - DRAFT

As consequence, if the gradient of f exists at u, the directional derivative exists in every
direction v and we have

Òvf(u) = v€
Òf(u). (A.8)

One way to see (A.8) in the case of continuity of the partial derivatives is via a Taylor’s
theorem based first-order approximation (see Theorem A.1):

f(u + hv) = f(u) + (h v)€
Òf(u) + O(h2),

where O(hk) denotes a function such that O(hk)/hk goes to a constant as h æ 0. Thus,

f(u + hv) ≠ f(u)
h

= v€
Òf(u) + O(h).

Now take the limit h æ 0 on both the sides to get (A.8).

It is useful to note that the directional derivative Òvf(u) is maximum in the direction of
the gradient in the sense that for all unit length vectors v, the choice v = Òf(u)/ÎÒf(u)Î
maximizes ÎÒvf(u)Î. This is a consequence of the Cauchy-Schwartz inequality (A.2):

|Òvf(u)| = |v€
Òf(u)| Æ ÎvÎÎÒf(u)Î = ÎÒf(u)Î.

Setting v = Òf(u)/ÎÒf(u)Î achieves the equality.

Jacobians

The Jacobian is useful for functions of the form f : Rn
æ Rm as in (A.4) where each fi is

a real-valued function of u. The Jacobian of f at u, denoted by Jf , is the m ◊ n matrix
defined via

Jf (u) =

S

WWWWWWU

ˆf1(u)
ˆu1

. . . ˆf1(u)
ˆun

...
. . .

...

ˆfm(u)
ˆu1

. . . ˆfm(u)
ˆun

T

XXXXXXV
. (A.9)

In other words, the i-th row of the Jacobian is the gradient Òfi(u). In some situations, it is
convenient to use the notation ˆf(u)

ˆu
to denote the transpose of the Jacobian of f at u. That

is,
ˆf(u)

ˆu
= (Jf (u))€ . (A.10)

Hessians

Returning to functions of the form f : Rn
æ R, to describe the curvature of the function

f at a given u œ Rn, it is important to consider the second-order partial derivatives at u.
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These partial derivatives are arranged as an n ◊ n matrix, called the Hessian and defined by

Ò
2f(u) = ˆÒf(u)

ˆu
=

S

WWWWWWWWWWWU

ˆ
2
f

ˆu
2

1

ˆ
2
f

ˆu1ˆu2

· · ·
ˆ

2
f

ˆu1ˆun

ˆ
2
f

ˆu2ˆu1

ˆ
2
f

ˆu
2

2

· · ·
ˆ

2
f

ˆu2ˆun

...
...

. . .
...

ˆ
2
f

ˆunˆu1

ˆ
2
f

ˆunˆu2

· · ·
ˆ

2
f

ˆu2
n

T

XXXXXXXXXXXV

, (A.11)

where ˆ
2
f

ˆuiˆuj
= ˆf

ˆui

1
ˆf

ˆuj

2
. Note that if all the second-order partial derivatives are continuous

at u, then the Hessian Ò
2f(u) is a symmetric matrix. That is, for all i, j œ {1, . . . , n},

ˆ2f

ˆuiˆuj

= ˆ2f

ˆujˆui

.

This result is known as Schwarz’s theorem or Clairaut’s theorem. Observe that using the
Jacobian, we can treat the Hessian as the Jacobian of the gradient vector. That is,

Ò
2f(u) = JÒf (u).

Certain attributes of optimization problems are often defined via positive (semi) definiteness
of the Hessian Ò

2f(◊) at ◊. In particular, a symmetric matrix A is said to be positive
semidefinite if for all „ œ Rd,

„€A „ Ø 0. (A.12)

Furthermore, A is said to be positive definite if the inequality in (A.12) is strict for all
„ œ Rd

\ {0}. Note that the matrix A is called is negative semidefinite (respectively, negative
definite) when ≠A is positive semidefinite (respectively, positive definite).

Di�erentiability

A multivariate vector valued function f : Rn
æ Rm is said to be di�erentiable at u œ Rn if

there is an m ◊ n dimensional matrix A such that

lim
væu

3
Îf(u) ≠ f(v) ≠ A(u ≠ v)Î

Îu ≠ vÎ

4
= 0.

Here the limit notation v æ u implies that the limit exists for every sequence {v(k) : k Ø 1}

such that limkæŒ v(k) = u. The matrix A is called the derivative. If the function f is
di�erentiable at u, then the derivative at u is equal to the Jacobian Jf (u). In particular, if
f is a real-valued function (that is, m = 1) and di�erentiable at u, then the derivative at u
is Òf(u)€. If the derivative is continuous on a set U ™ Rn, we say that f is continuously
di�erentiable on U , and in that case all the partial derivatives ˆf(u)

ˆui
are continuous on U .
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A Some Multivariable Calculus - DRAFT

A.3 The Multivariable Chain Rule
Consider a multivariate vector valued function h : Rn

æ Rk and a multivariate real-valued
function g : Rk

æ R. Suppose that h is di�erentiable at u œ Rn and g is di�erentiable at
h(u) = [h1(u) · · · hk(u)]€. Let f : Rn

æ R be the composition f = g ¶ h or f(u) = g(h(u)).
For each i = 1, . . . , n, the multivariate chain rule is,

ˆf(u)
ˆui

= ˆg(h(u))
ˆv1

ˆh1(u)
ˆui

+ · · · + ˆg(h(u))
ˆvk

ˆhk(u)
ˆui

,

where ˆg

ˆvi
denotes the partial derivative of g with respect to the i-th coordinate. Thus,

ˆf(u)
ˆui

=
Ë

ˆh1(u)
ˆui

· · ·
ˆhk(u)

ˆui

È
Òg

!
h(u)

"
,

and combining for all i = 1, . . . , n,

Òf(u) = Jh(u)€
Òg

!
h(u)

"
.

Now consider the case where g is also a multivariate vector valued function. That is, suppose
h : Rn

æ Rk is di�erentiable at u and g : Rk
æ Rm is di�erentiable at h(u). Then the

composition f = g ¶ h : Rn
æ Rm is a vector valued function with Jacobian,

Jf (u) = Jg

!
h(u)

"
Jh(u). (A.13)

The expression in (A.13) is called the multivariable chain rule. In terms of the notation
(A.10), we may represent the multivariable chain rule as,

Ëˆf

ˆu

È€
=

Ë ˆg

ˆh

È€Ëˆh

ˆu

È€
, or ˆf

ˆu
= ˆh

ˆu

ˆg

ˆh
. (A.14)

The Chain Rule for a Matrix Derivative of an A�ne Transformation

Let us focus on the case y = g(h(u)) where h : Rn
æ Rk and g : Rk

æ R. Specifically let us
assume that h(·) is the a�ne function h(u) = Wu + b where W œ Rk◊n and b œ Rk. That is,

y = g(z), with z = Wu + b.

We are often interested in the derivative of the scalar output y with respect to the matrix
W = [wi,j ]. This is denoted via ˆy

ˆW
as in (A.7).

It turns out that we can represent this matrix derivative as the outer product,

ˆy

ˆW
= ˆy

ˆz
u€, (A.15)

where ˆy

ˆz
is the gradient of g(·) evaluated at z.

To see (A.15) denote the columns of W via w(1), . . . , w(n), each an element of Rk, and
observe that,

z = b +
nÿ

i=1
uiw(i).
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We may now observe that Jacobian transposed ˆz/ˆw(i) is uiI, where I is the k ◊ k identity
matrix. Hence now, using (A.13), we have,

ˆy

ˆw(i)
= ˆz

ˆw(i)

ˆy

ˆz
= ui

ˆy

ˆz
.

Now we can construct ˆy

ˆW
column by column,

ˆy

ˆW
=

Ë ˆy

ˆw(1)
· · ·

ˆy

ˆw(n)

È
=

Ë
u1

ˆy

ˆz
· · · un

ˆy

ˆz

È
= ˆy

ˆz
u€.

Jacobian Vector Products and Vector Jacobian Products

Let f = (f1, . . . , fm) = hL ¶ hL≠1 ¶ · · · ¶ h1 be a composition of L di�erentiable functions
h1, h2, . . . , hL such that h¸ : Rm¸≠1 æ Rm¸ where m0, m1, . . . , mL are positive integers with
m0 = n and mL = m.

Further, to simplify the notation, for each ¸ = 1, . . . , L, let

g¸(u) = h¸ (h¸≠1 (· · · (h1(u)) · · ·)) .

Then, gL(u) = f(u) and by recursive application of (A.13), we obtain

Jf (u) = JhL (gL≠1(u)) JhL≠1
(gL≠2(u)) · · · Jh1

(u). (A.16)

Note that from the definition of the Jacobian, the j-th column of Jf (u) is the m dimensional
vector

ˆf(u)
ˆuj

=
3

ˆf1(u)
ˆuj

, . . . ,
ˆfm(u)

ˆuj

4
= Jf (u)ej ,

where ej is the j-th unit vector of appropriate dimension. Therefore, using (A.16), for each
j = 1, . . . , n,

ˆf(u)
ˆuj

= JhL (gL≠1(u))
C

JhL≠1
(gL≠2(u))

Ë
· · · [Jh1

(u)ej ] · · ·

ÈD
. (A.17)

That is, for each j = 1, . . . , n, ˆf(u)
ˆuj

can be obtained by recursively computing the Jacobian
vector product given by

v¸ := Jh¸ (g¸≠1(u)) v¸≠1,

for ¸ = 1, . . . , L, starting with v0 = ej and g0(u) = u.

On the other hand, since the i-th row of Jf (u) is the gradient Òfi(u), we have

Òfi(u) = e€
i

Jf (u)

=
C

· · ·

Ë #
e€

i
JhL (gL≠1(u))

$
JhL≠1

(gL≠2(u))
È

· · ·

D
Jh1

(u). (A.18)
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That is, for each i = 1, . . . , m, Òfi(u) can be obtained by recursively computing the vector
Jacobian product given by

v€
¸

:= v€
¸≠1JhL≠¸+1

(gL≠¸(u)) ,

for ¸ = 1, . . . , L, starting with v0 = ei and g0(u) = u.

A.4 Taylor’s Theorem
Once again consider a multivariate real-valued function f : Rn

æ R. If all the k-order deriva-
tives of f are continuous at a point u œ Rn, then Taylor’s theorem o�ers an approximation
for f within a neighborhood of u in terms of these derivatives. We are particularly interested
in cases where k = 1 and k = 2 as they are crucial in implementation of, respectively, the
first-order and the second-order optimization methods. It is easy to understand the theorem
when the function f is univariate. Hence we start with the univariate case and then move to
the general multivariate case. We omit the proof of Taylor’s theorem as it is a well known
result that can be found in any standard multivariate calculus textbook.

Univariate Case

Suppose that n = 1, that is, f is a univariate real-valued function. We say that f is k-times
continuously di�erentiable on an open interval U ™ R if f is k times di�erentiable at every
point on U (i.e., the k-th order derivative d

k
f(u)

duk exists for all u œ U) and d
k

f(u)
duk is continuous

on U . If k = 0, we interpret dk
f(u)

duk simply as f(u).

Theorem A.1 (Taylor’s Theorem in R). Let f : R æ R be k-times continuously
di�erentiable on an open interval U ™ R. Then, for any u, v œ U ,

f(u) =
kÿ

i=0

(u ≠ v)i

i!
dif(v)

dui
+ O

!
|u ≠ v|

k+1"
. (A.19)

The polynomial,

Pk(u) =
kÿ

i=0

(u ≠ v)i

i!
dif(v)

dui
,

appeared in (A.19) is called k-th order Taylor polynomial. Since the remainder

Rk(u) = f(u) ≠ Pk(u) ≠æ 0, as x æ a,

f(u) is approximately equal to Pk(u) for u within a small neighborhood of a. Particularly, for
a point u near v, P1(u) is linear approximation of f(u) and P2(u) is quadratic approximation
of f(u).

Multivariate Case

Now consider the multivariate case, that is, f is a multivariate real-valued function. In order
to state Taylor’s theorem for this case, we need some new notion that is relevant only here.
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An n-tuple – = (–1, . . . , –n) is called multi-index if each –i is a non-negative integer. For a
multi-index –, let

|–| =
nÿ

i=1
–i, –! = –1! · · · –n!, and u– = u–1

1 · · · u–n
n

,

for any u œ Rn. Then, the higher order partial derivatives are expressed as

D–f(u) = ˆ|–|f(u)
ˆu–1

1 · · · ˆu–n
n

.

We say that f is k-times continuously di�erentiable on an open set U ™ Rn if all the higher
order partial derivatives D–f(u) exists and are continuous on U for all multi-index – such
that |–| Æ k.

Theorem A.2 (Taylor’s Theorem in Rn). Let f : Rn
æ R be a k-times continuously

di�erentiable on an open set U ™ Rn. Then, for any u, v œ U ,

f(u) =
ÿ

–:|–|Æk

D–f(v) (u ≠ v)–

–! + O
!
Îu ≠ vÎ

k+1"
. (A.20)

The polynomial,
Pk(u) =

ÿ

–:|–|Æk

D–f(v) (u ≠ v)–

–! ,

is called k-th order Taylor’s polynomial. In particular,

P1(u) =
ÿ

–:|–|Æ1

D–f(v) (u ≠ v)–

–! = f(v) + (u ≠ v)€
Òf(a), (A.21)

for u near v, provides linear approximation, also called first-order Taylor’s approximation,
to f(u), while

P2(u) =
ÿ

–:|–|Æ2

D–f(v) (u ≠ v)–

–!

= f(v) + (u ≠ v)€
Òf(v) + 1

2(u ≠ v)€
Ò

2f(v)(u ≠ v) (A.22)

provides quadratic approximation, also called second-order Taylor’s approximation, to f(u).

Linear Approximation with Jacobians and Hessians

Consider a di�erentiable function f : Rn
æ Rm with the m ◊ n Jacobian Jf (·). Then with

Theorem (A.2) we may construct a first order linear approximation to f(·) around any
u0 œ Rn,

f̃(u) = f(u0) + Jf (u0)(u ≠ u0), (A.23)

where f̃(u) ¥ f(u).
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Now consider a twice di�erentiable g : Rn
æ R with gradient Òg(·) and Hessian matrix

Ò
2g(·). We can set f(u) = Òg(u) with f : Rn

æ Rn. Since the Hessian of g(·) is the Jacobian
of f(·), from (A.23) we obtain a first order linear approximation for the gradient around
u0 œ Rn,

ÂÒg(u) = Òg(u0) + Ò
2g(u0)(u ≠ u0), (A.24)

where ÂÒg(u) ¥ Òg(u).
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