

Mathematical Engineering of Deep Learning

Book Draft

Benoit Liquet, Sarat Moka and Yoni Nazarathy

February 28, 2024

Contents

Pr	reface - DRAFT	3
1	Introduction - DRAFT 1.1 The Age of Deep Learning	1 7 12 17 20 23 25
2	Principles of Machine Learning - DRAFT 2.1 Key Activities of Machine Learning . 2.2 Supervised Learning . 2.3 Linear Models at Our Core . 2.4 Iterative Optimization Based Learning . 2.5 Generalization, Regularization, and Validation . 2.6 A Taste of Unsupervised Learning . Notes and References .	27 32 39 48 52 62 72
3	Simple Neural Networks - DRAFT 3.1 Logistic Regression in Statistics	75 75 82 86 95 99
4	4.1 Formulation of Optimization 4.2 Optimization in the Context of Deep Learning 4.3 Adaptive Optimization with ADAM 4.4 Automatic Differentiation 4.5 Additional Techniques for First-Order Methods 4.6 Concepts of Second-Order Methods	113 120 128 135 143 152
5	5.1 The General Fully Connected Architecture	167 167 173 180 184

Contents

	5.6 Batch Normalization	194 197
	Notes and References	203
6	Convolutional Neural Networks - DRAFT 6.1 Overview of Convolutional Neural Networks 6.2 The Convolution Operation 6.3 Building a Convolutional Layer 6.4 Building a Convolutional Neural Network 6.5 Inception, ResNets, and Other Landmark Architectures 6.6 Beyond Classification Notes and References	20! 20! 20! 216 226 236 240 247
7	Sequence Models - DRAFT7.1 Overview of Models and Activities for Sequence Data7.2 Basic Recurrent Neural Networks7.3 Generalizations and Modifications to RNNs7.4 Encoders Decoders and the Attention Mechanism7.5 TransformersNotes and References	249 249 255 265 271 279 294
8	Specialized Architectures and Paradigms - DRAFT 8.1 Generative Modelling Principles 8.2 Diffusion Models 8.3 Generative Adversarial Networks 8.4 Reinforcement Learning 8.5 Graph Neural Networks Notes and References	297 306 315 328 338 353
Еp	pilogue - DRAFT	35!
A	Some Multivariable Calculus - DRAFT A.1 Vectors and Functions in \mathbb{R}^n . A.2 Derivatives	357 357 359 362 364
В	Cross Entropy and Other Expectations with Logarithms - DRAFT B.1 Divergences and Entropies	36 7 369
Bil	bliography	399
Index		40°

This appendix provides key results and notation from multivariable calculus. It is not an exhaustive summary of multi-variable calculus but rather contains the results needed for the contents of the book.

A.1 Vectors and Functions in \mathbb{R}^n

Denote the set of all the real numbers by \mathbb{R} and the real coordinate space of dimension n by \mathbb{R}^n . Each element of \mathbb{R}^n is an n dimensional vector, interpreted as a column of the form

$$u = (u_1, \dots, u_n) = \begin{bmatrix} u_1 & \dots & u_n \end{bmatrix}^\top = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}.$$

The Euclidean norm of $u \in \mathbb{R}^n$, measuring the geometric length of u and also known as the L_2 norm, is

$$||u||_2 = \sqrt{u^\top u} = \left(\sum_{i=1}^n u_i^2\right)^{1/2}.$$

Here the scalar $u^{\top}v$ is the *inner product* between two vectors $u, v \in \mathbb{R}^n$. A normalized form of the inner product, called the *cosine of the angle* between the two vectors, sometimes simply denoted $\cos \theta$, is,

$$\cos \theta = \frac{u^{\top}v}{\|u\|_2 \|v\|_2}.\tag{A.1}$$

The Euclidean norm is a special case of the L_p norm which is defined via,

$$||u||_p = \left(\sum_{i=1}^n |u_i|^p\right)^{1/p},$$

for $p \geq 1$. When p in $\|\cdot\|_p$ is not specified, we interpret $\|\cdot\|$ as the L_2 norm.

Focusing on the L_2 norm and the inner product $u^{\top}v$, the Cauchy-Schwartz inequality is,

$$|u^{\top}v| \le ||u|| ||v||,$$
 (A.2)

where the two sides are equal if and only if u and v are linearly dependent (that is, u = cv for some $c \in \mathbb{R}$). Also, the Euclidean distance (or, simply the distance) between u and v is

defined as

$$||u-v|| = \left(\sum_{i=1}^{n} (u_i - v_i)^2\right)^{1/2}.$$

An important consequence of the Cauchy-Schwartz inequality is that the Euclidean norm satisfies the *triangle inequality*: For any $u, v \in \mathbb{R}^n$,

$$||u+v|| \le ||u|| + ||v||. \tag{A.3}$$

To see this, observe that

$$||u + v||^2 = ||u||^2 + ||v||^2 + 2u^{\top}v$$

$$\leq ||u||^2 + ||v||^2 + 2||u|| ||v||$$

$$= (||u|| + ||v||)^2.$$

Convergence of a sequence of vectors can be defined via scalar converge of the distance. That is, a sequence of vectors $u^{(1)}, u^{(2)}, \ldots$ in \mathbb{R}^n is said to *converge* to a vector $u \in \mathbb{R}^n$, denoted via $\lim_{k \to \infty} u^{(k)} = u$, if

$$\lim_{k \to \infty} ||u^{(k)} - u|| = 0.$$

That is, if for every $\varepsilon > 0$ there exists an N_0 such that for all $k \geq N_0$,

$$||u^{(k)} - u|| < \varepsilon.$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ be an *n*-dimensional multivariate function that maps each vector $u = (u_1, \dots, u_n)^\top \in \mathbb{R}^n$ to a real number. Then, the function is said to be *continuous* at $u \in \mathbb{R}^n$ if for any sequence $u^{(1)}, u^{(2)}, \dots$ such that $\lim_{k \to \infty} u^{(k)} = u$, we have that

$$\lim_{k \to \infty} f(u^{(k)}) = f(u).$$

Alternatively, f is continuous at $u \in \mathbb{R}^n$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(u) - f(v)| < \varepsilon$$
,

for every $v \in \mathbb{R}^n$ with $||u - v|| < \delta$. Continuity of f at u implies that the values of f at u and at v can be made arbitrarily close by setting the point v to be arbitrarily close to u.

We can extend the above continuity definitions to multivariate vector valued functions of the form $f: \mathbb{R}^n \to \mathbb{R}^m$ that map every n dimensional real-valued vector to an m dimensional real-valued vector. Such functions can be written as

$$f(u) = [f_1(u) \cdots f_m(u)]^\top, \tag{A.4}$$

where $f_i: \mathbb{R}^n \to \mathbb{R}$ for each i = 1, ..., m. Then, the function f is called continuous at u if each f_i is continuous at u. We say that the function f is continuous on a set $\mathcal{U} \subseteq \mathbb{R}^n$ if f is continuous at each point in \mathcal{U} .

A.2 Derivatives

Consider an *n*-dimensional multivariate function $f: \mathbb{R}^n \to \mathbb{R}$. The partial derivative $\frac{\partial f(u)}{\partial u_i}$ of f with respect u_i is the derivative taken with respect to the variable u_i while keeping all other variables constant. That is,

$$\frac{\partial f(u)}{\partial u_i} = \lim_{h \to 0} \frac{f(u_1, \dots, u_{i-1}, u_i + h, u_{i+1}, \dots, u_n) - f(u)}{h}.$$
 (A.5)

Suppose that the partial derivative (A.5) exists for all i = 1, ..., n. Then the *gradient* of f at u, denoted by $\nabla f(u)$ or $\frac{\partial f(u)}{\partial u}$, is a concatenation of the partial derivatives of f with respect to all its variables, and it is expressed as a vector:

$$\nabla f(u) = \frac{\partial f(u)}{\partial u} = \left[\frac{\partial f(u)}{\partial u_1} \cdots \frac{\partial f(u)}{\partial u_n} \right]^{\top}.$$
 (A.6)

The gradient $\nabla f(u)$ is a vector capturing the direction of the steepest ascent at u. Further, $h||\nabla f(u)||$ is the increase in f when moving in that direction for infinitesimal distance h.

In some situations, instead of a vector form, variables of the function are represented as a matrix. In that scenario, multivariate functions are of form $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, that is, f maps matrices $U = (u_{i,j})$ of dimension $n \times m$ to real values f(U). If the partial derivative $\frac{\partial f(U)}{\partial u_{i,j}}$ exists for all $i = 1, \ldots, n$ and $j = 1, \ldots, m$, it is convenient to use the notation $\frac{\partial f(U)}{\partial U}$ to denote the collection of the partial derivatives of f with respect to all its variables as a matrix of the same dimension $n \times m$,

$$\frac{\partial f(U)}{\partial U} = \begin{bmatrix}
\frac{\partial f(U)}{\partial u_{1,1}} & \cdots & \frac{\partial f(U)}{\partial u_{1,m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f(U)}{\partial u_{n,1}} & \cdots & \frac{\partial f(U)}{\partial u_{n,m}}
\end{bmatrix} .$$
(A.7)

Directional Derivatives

The directional derivative of $f: \mathbb{R}^n \to \mathbb{R}$ at u in the direction $v \in \mathbb{R}^n$ is the scalar defined by

$$\nabla_v f(u) = \lim_{h \to 0} \frac{f(u + hv) - f(u)}{h}.$$

The directional derivative generalizes the notion of the partial derivative. In fact, the partial derivative $\frac{\partial f(u)}{\partial u_i}$ is the directional derivative at u in the direction of the vector e_i which consists of 1 at the i-th coordinate and zeros everywhere else. This simply follows from the observation that

$$\nabla_{e_i} f(u) = \lim_{h \to 0} \frac{f(u_1, \dots, u_{i-1}, u_i + h, u_{i+1}, \dots, u_n) - f(u)}{h} = \frac{\partial f(u)}{\partial u_i}.$$

As consequence, if the gradient of f exists at u, the directional derivative exists in every direction v and we have

$$\nabla_{v} f(u) = v^{\top} \nabla f(u). \tag{A.8}$$

One way to see (A.8) in the case of continuity of the partial derivatives is via a Taylor's theorem based first-order approximation (see Theorem A.1):

$$f(u + hv) = f(u) + (hv)^{\top} \nabla f(u) + O(h^2),$$

where $O(h^k)$ denotes a function such that $O(h^k)/h^k$ goes to a constant as $h \to 0$. Thus,

$$\frac{f(u+hv) - f(u)}{h} = v^{\top} \nabla f(u) + O(h).$$

Now take the limit $h \to 0$ on both the sides to get (A.8).

It is useful to note that the directional derivative $\nabla_v f(u)$ is maximum in the direction of the gradient in the sense that for all unit length vectors v, the choice $v = \nabla f(u) / \|\nabla f(u)\|$ maximizes $\|\nabla_v f(u)\|$. This is a consequence of the Cauchy-Schwartz inequality (A.2):

$$|\nabla_v f(u)| = |v^{\top} \nabla f(u)| \le ||v|| ||\nabla f(u)|| = ||\nabla f(u)||.$$

Setting $v = \nabla f(u) / ||\nabla f(u)||$ achieves the equality.

Jacobians

The Jacobian is useful for functions of the form $f: \mathbb{R}^n \to \mathbb{R}^m$ as in (A.4) where each f_i is a real-valued function of u. The Jacobian of f at u, denoted by J_f , is the $m \times n$ matrix defined via

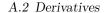
$$J_f(u) = \begin{bmatrix} \frac{\partial f_1(u)}{\partial u_1} & \dots & \frac{\partial f_1(u)}{\partial u_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(u)}{\partial u_1} & \dots & \frac{\partial f_m(u)}{\partial u_n} \end{bmatrix}. \tag{A.9}$$

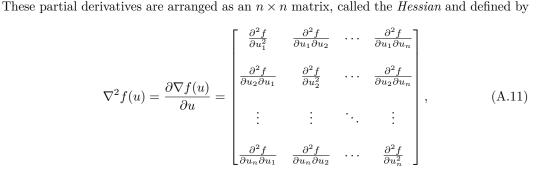
In other words, the *i*-th row of the Jacobian is the gradient $\nabla f_i(u)$. In some situations, it is convenient to use the notation $\frac{\partial f(u)}{\partial u}$ to denote the transpose of the Jacobian of f at u. That is,

$$\frac{\partial f(u)}{\partial u} = \left(J_f(u)\right)^{\top}.\tag{A.10}$$

Hessians

Returning to functions of the form $f: \mathbb{R}^n \to \mathbb{R}$, to describe the curvature of the function f at a given $u \in \mathbb{R}^n$, it is important to consider the second-order partial derivatives at u.





where $\frac{\partial^2 f}{\partial u_i \partial u_j} = \frac{\partial f}{\partial u_i} \left(\frac{\partial f}{\partial u_j} \right)$. Note that if all the second-order partial derivatives are continuous at u, then the Hessian $\nabla^2 f(u)$ is a symmetric matrix. That is, for all $i, j \in \{1, \dots, n\}$,

$$\frac{\partial^2 f}{\partial u_i \partial u_j} = \frac{\partial^2 f}{\partial u_j \partial u_i}.$$

This result is known as *Schwarz's theorem* or *Clairaut's theorem*. Observe that using the Jacobian, we can treat the Hessian as the Jacobian of the gradient vector. That is,

$$\nabla^2 f(u) = J_{\nabla f}(u).$$

Certain attributes of optimization problems are often defined via positive (semi) definiteness of the Hessian $\nabla^2 f(\theta)$ at θ . In particular, a symmetric matrix A is said to be positive semidefinite if for all $\phi \in \mathbb{R}^d$.

$$\phi^{\top} A \phi \ge 0. \tag{A.12}$$

Furthermore, A is said to be positive definite if the inequality in (A.12) is strict for all $\phi \in \mathbb{R}^d \setminus \{0\}$. Note that the matrix A is called is negative semidefinite (respectively, negative definite) when -A is positive semidefinite (respectively, positive definite).

Differentiability

A multivariate vector valued function $f: \mathbb{R}^n \to \mathbb{R}^m$ is said to be differentiable at $u \in \mathbb{R}^n$ if there is an $m \times n$ dimensional matrix A such that

$$\lim_{v \to u} \left(\frac{\|f(u) - f(v) - A(u - v)\|}{\|u - v\|} \right) = 0.$$

Here the limit notation $v \to u$ implies that the limit exists for every sequence $\{v^{(k)}: k \geq 1\}$ such that $\lim_{k \to \infty} v^{(k)} = u$. The matrix A is called the *derivative*. If the function f is differentiable at u, then the derivative at u is equal to the Jacobian $J_f(u)$. In particular, if f is a real-valued function (that is, m = 1) and differentiable at u, then the derivative at u is $\nabla f(u)^{\top}$. If the derivative is continuous on a set $\mathcal{U} \subseteq \mathbb{R}^n$, we say that f is continuously differentiable on \mathcal{U} , and in that case all the partial derivatives $\frac{\partial f(u)}{\partial u_i}$ are continuous on \mathcal{U} .

A.3 The Multivariable Chain Rule

Consider a multivariate vector valued function $h: \mathbb{R}^n \to \mathbb{R}^k$ and a multivariate real-valued function $g: \mathbb{R}^k \to \mathbb{R}$. Suppose that h is differentiable at $u \in \mathbb{R}^n$ and g is differentiable at $h(u) = [h_1(u) \cdots h_k(u)]^\top$. Let $f: \mathbb{R}^n \to \mathbb{R}$ be the composition $f = g \circ h$ or f(u) = g(h(u)). For each $i = 1, \ldots, n$, the multivariate chain rule is,

$$\frac{\partial f(u)}{\partial u_i} = \frac{\partial g(h(u))}{\partial v_1} \frac{\partial h_1(u)}{\partial u_i} + \dots + \frac{\partial g(h(u))}{\partial v_k} \frac{\partial h_k(u)}{\partial u_i},$$

where $\frac{\partial g}{\partial v_i}$ denotes the partial derivative of g with respect to the i-th coordinate. Thus,

$$\frac{\partial f(u)}{\partial u_i} = \begin{bmatrix} \frac{\partial h_1(u)}{\partial u_i} & \cdots & \frac{\partial h_k(u)}{\partial u_i} \end{bmatrix} \nabla g(h(u)),$$

and combining for all i = 1, ..., n,

$$\nabla f(u) = J_h(u)^{\top} \nabla g(h(u)).$$

Now consider the case where g is also a multivariate vector valued function. That is, suppose $h: \mathbb{R}^n \to \mathbb{R}^k$ is differentiable at u and $g: \mathbb{R}^k \to \mathbb{R}^m$ is differentiable at h(u). Then the composition $f = g \circ h: \mathbb{R}^n \to \mathbb{R}^m$ is a vector valued function with Jacobian,

$$J_f(u) = J_g(h(u))J_h(u). \tag{A.13}$$

The expression in (A.13) is called the multivariable chain rule. In terms of the notation (A.10), we may represent the multivariable chain rule as,

$$\left[\frac{\partial f}{\partial u}\right]^{\top} = \left[\frac{\partial g}{\partial h}\right]^{\top} \left[\frac{\partial h}{\partial u}\right]^{\top}, \quad \text{or} \quad \frac{\partial f}{\partial u} = \frac{\partial h}{\partial u} \frac{\partial g}{\partial h}. \tag{A.14}$$

The Chain Rule for a Matrix Derivative of an Affine Transformation

Let us focus on the case y = g(h(u)) where $h : \mathbb{R}^n \to \mathbb{R}^k$ and $g : \mathbb{R}^k \to \mathbb{R}$. Specifically let us assume that $h(\cdot)$ is the affine function h(u) = Wu + b where $W \in \mathbb{R}^{k \times n}$ and $b \in \mathbb{R}^k$. That is,

$$y = q(z)$$
, with $z = Wu + b$.

We are often interested in the derivative of the scalar output y with respect to the matrix $W = [w_{i,j}]$. This is denoted via $\frac{\partial y}{\partial W}$ as in (A.7).

It turns out that we can represent this matrix derivative as the outer product,

$$\frac{\partial y}{\partial W} = \frac{\partial y}{\partial z} u^{\top},\tag{A.15}$$

where $\frac{\partial y}{\partial z}$ is the gradient of $g(\cdot)$ evaluated at z.

To see (A.15) denote the columns of W via $w_{(1)}, \ldots, w_{(n)}$, each an element of \mathbb{R}^k , and observe that,

$$z = b + \sum_{i=1}^{n} u_i w_{(i)}.$$

—

A.3 The Multivariable Chain Rule

We may now observe that Jacobian transposed $\partial z/\partial w_{(i)}$ is u_iI , where I is the $k \times k$ identity matrix. Hence now, using (A.13), we have,

$$\frac{\partial y}{\partial w_{(i)}} = \frac{\partial z}{\partial w_{(i)}} \frac{\partial y}{\partial z} = u_i \frac{\partial y}{\partial z}.$$

Now we can construct $\frac{\partial y}{\partial W}$ column by column,

$$\frac{\partial y}{\partial W} = \left[\frac{\partial y}{\partial w_{(1)}} \cdots \frac{\partial y}{\partial w_{(n)}} \right] = \left[u_1 \frac{\partial y}{\partial z} \cdots u_n \frac{\partial y}{\partial z} \right] = \frac{\partial y}{\partial z} u^\top.$$

Jacobian Vector Products and Vector Jacobian Products

Let $f = (f_1, \ldots, f_m) = h_L \circ h_{L-1} \circ \cdots \circ h_1$ be a composition of L differentiable functions h_1, h_2, \ldots, h_L such that $h_\ell : \mathbb{R}^{m_{\ell-1}} \to \mathbb{R}^{m_\ell}$ where m_0, m_1, \ldots, m_L are positive integers with $m_0 = n$ and $m_L = m$.

Further, to simplify the notation, for each $\ell = 1, \ldots, L$, let

$$g_{\ell}(u) = h_{\ell} \left(h_{\ell-1} \left(\cdots \left(h_1(u) \right) \cdots \right) \right).$$

Then, $g_L(u) = f(u)$ and by recursive application of (A.13), we obtain

$$J_f(u) = J_{h_L}(g_{L-1}(u)) J_{h_{L-1}}(g_{L-2}(u)) \cdots J_{h_1}(u). \tag{A.16}$$

Note that from the definition of the Jacobian, the j-th column of $J_f(u)$ is the m dimensional vector

$$\frac{\partial f(u)}{\partial u_j} = \left(\frac{\partial f_1(u)}{\partial u_j}, \dots, \frac{\partial f_m(u)}{\partial u_j}\right) = J_f(u)e_j,$$

where e_j is the j-th unit vector of appropriate dimension. Therefore, using (A.16), for each j = 1, ..., n,

$$\frac{\partial f(u)}{\partial u_j} = J_{h_L} (g_{L-1}(u)) \left[J_{h_{L-1}} (g_{L-2}(u)) \left[\cdots \left[J_{h_1}(u) e_j \right] \cdots \right] \right]. \tag{A.17}$$

That is, for each $j=1,\ldots,n, \frac{\partial f(u)}{\partial u_j}$ can be obtained by recursively computing the *Jacobian vector product* given by

$$v_{\ell} := J_{h_{\ell}} (g_{\ell-1}(u)) v_{\ell-1},$$

for $\ell = 1, ..., L$, starting with $v_0 = e_i$ and $g_0(u) = u$.

On the other hand, since the *i*-th row of $J_f(u)$ is the gradient $\nabla f_i(u)$, we have

$$\nabla f_i(u) = e_i^{\top} J_f(u)$$

$$= \left[\cdots \left[\left[e_i^{\top} J_{h_L} \left(g_{L-1}(u) \right) \right] J_{h_{L-1}} \left(g_{L-2}(u) \right) \right] \cdots \right] J_{h_1}(u). \tag{A.18}$$

That is, for each i = 1, ..., m, $\nabla f_i(u)$ can be obtained by recursively computing the *vector Jacobian product* given by

 $v_{\ell}^{\top} := v_{\ell-1}^{\top} J_{h_{L-\ell+1}} \left(g_{L-\ell}(u) \right),$

for $\ell = 1, ..., L$, starting with $v_0 = e_i$ and $g_0(u) = u$.

A.4 Taylor's Theorem

Once again consider a multivariate real-valued function $f: \mathbb{R}^n \to \mathbb{R}$. If all the k-order derivatives of f are continuous at a point $u \in \mathbb{R}^n$, then Taylor's theorem offers an approximation for f within a neighborhood of u in terms of these derivatives. We are particularly interested in cases where k=1 and k=2 as they are crucial in implementation of, respectively, the first-order and the second-order optimization methods. It is easy to understand the theorem when the function f is univariate. Hence we start with the univariate case and then move to the general multivariate case. We omit the proof of Taylor's theorem as it is a well known result that can be found in any standard multivariate calculus textbook.

Univariate Case

Suppose that n=1, that is, f is a univariate real-valued function. We say that f is k-times continuously differentiable on an open interval $\mathcal{U} \subseteq \mathbb{R}$ if f is k times differentiable at every point on \mathcal{U} (i.e., the k-th order derivative $\frac{\mathsf{d}^k f(u)}{\mathsf{d} u^k}$ exists for all $u \in \mathcal{U}$) and $\frac{\mathsf{d}^k f(u)}{\mathsf{d} u^k}$ is continuous on \mathcal{U} . If k=0, we interpret $\frac{\mathsf{d}^k f(u)}{\mathsf{d} u^k}$ simply as f(u).

Theorem A.1 (Taylor's Theorem in \mathbb{R}). Let $f : \mathbb{R} \to \mathbb{R}$ be k-times continuously differentiable on an open interval $\mathcal{U} \subseteq \mathbb{R}$. Then, for any $u, v \in \mathcal{U}$,

$$f(u) = \sum_{i=0}^{k} \frac{(u-v)^i}{i!} \frac{\mathrm{d}^i f(v)}{\mathrm{d}u^i} + O\left(|u-v|^{k+1}\right). \tag{A.19}$$

The polynomial,

$$P_k(u) = \sum_{i=0}^k \frac{(u-v)^i}{i!} \frac{\mathrm{d}^i f(v)}{\mathrm{d} u^i},$$

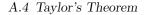
appeared in (A.19) is called k-th order Taylor polynomial. Since the remainder

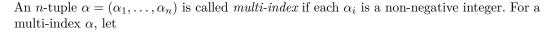
$$R_k(u) = f(u) - P_k(u) \longrightarrow 0$$
, as $x \to a$,

f(u) is approximately equal to $P_k(u)$ for u within a small neighborhood of a. Particularly, for a point u near v, $P_1(u)$ is linear approximation of f(u) and $P_2(u)$ is quadratic approximation of f(u).

Multivariate Case

Now consider the multivariate case, that is, f is a multivariate real-valued function. In order to state Taylor's theorem for this case, we need some new notion that is relevant only here.





$$|\alpha| = \sum_{i=1}^{n} \alpha_i, \quad \alpha! = \alpha_1! \cdots \alpha_n!, \quad \text{and} \quad u^{\alpha} = u_1^{\alpha_1} \cdots u_n^{\alpha_n},$$

for any $u \in \mathbb{R}^n$. Then, the higher order partial derivatives are expressed as

$$D^{\alpha}f(u) = \frac{\partial^{|\alpha|}f(u)}{\partial u_1^{\alpha_1} \cdots \partial u_n^{\alpha_n}}.$$

We say that f is k-times continuously differentiable on an open set $\mathcal{U} \subseteq \mathbb{R}^n$ if all the higher order partial derivatives $D^{\alpha}f(u)$ exists and are continuous on \mathcal{U} for all multi-index α such that $|\alpha| \leq k$.

Theorem A.2 (Taylor's Theorem in \mathbb{R}^n). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a k-times continuously differentiable on an open set $\mathcal{U} \subseteq \mathbb{R}^n$. Then, for any $u, v \in \mathcal{U}$,

$$f(u) = \sum_{\alpha: |\alpha| \le k} D^{\alpha} f(v) \frac{(u-v)^{\alpha}}{\alpha!} + O(\|u-v\|^{k+1}).$$
 (A.20)

The polynomial,

$$P_k(u) = \sum_{\alpha: |\alpha| \le k} D^{\alpha} f(v) \frac{(u-v)^{\alpha}}{\alpha!},$$

is called k-th order Taylor's polynomial. In particular,

$$P_1(u) = \sum_{\alpha: |\alpha| \le 1} D^{\alpha} f(v) \frac{(u-v)^{\alpha}}{\alpha!} = f(v) + (u-v)^{\top} \nabla f(a), \tag{A.21}$$

for u near v, provides linear approximation, also called first-order Taylor's approximation, to f(u), while

$$P_{2}(u) = \sum_{\alpha: |\alpha| \leq 2} D^{\alpha} f(v) \frac{(u-v)^{\alpha}}{\alpha!}$$

$$= f(v) + (u-v)^{\top} \nabla f(v) + \frac{1}{2} (u-v)^{\top} \nabla^{2} f(v) (u-v)$$
(A.22)

provides quadratic approximation, also called second-order Taylor's approximation, to f(u).

Linear Approximation with Jacobians and Hessians

Consider a differentiable function $f: \mathbb{R}^n \to \mathbb{R}^m$ with the $m \times n$ Jacobian $J_f(\cdot)$. Then with Theorem (A.2) we may construct a first order linear approximation to $f(\cdot)$ around any $u_0 \in \mathbb{R}^n$,

$$\tilde{f}(u) = f(u_0) + J_f(u_0)(u - u_0),$$
(A.23)

where $\tilde{f}(u) \approx f(u)$.

Now consider a twice differentiable $g: \mathbb{R}^n \to \mathbb{R}$ with gradient $\nabla g(\cdot)$ and Hessian matrix $\nabla^2 g(\cdot)$. We can set $f(u) = \nabla g(u)$ with $f: \mathbb{R}^n \to \mathbb{R}^n$. Since the Hessian of $g(\cdot)$ is the Jacobian of $f(\cdot)$, from (A.23) we obtain a first order linear approximation for the gradient around $u_0 \in \mathbb{R}^n$,

$$\widetilde{\nabla}g(u) = \nabla g(u_0) + \nabla^2 g(u_0)(u - u_0), \tag{A.24}$$

where $\widetilde{\nabla}g(u) \approx \nabla g(u)$.

