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B Cross Entropy and Other Expectations
with Logarithms - DRAFT

This appendix expands on basic properties of cross entropy, the KL-divergence, and related
concepts, also in the context of the multivariate normal distribution. It is not meant to be
an extensive review of these concepts but rather provides key definitions, properties, and
results needed for the content of the book.

B.1 Divergences and Entropies
We first define the relative entropy (KL-divergence), cross entropy, and entropy in the
context of discrete probability distributions. We then present we then provide a definition of
the KL-divergence for continuous random variables. Finally we define the Jensen–Shannon
divergence.

The KL-divergence for Discrete Distributions

Assume two probability distributions p(·) and q(·) over elements in some discrete sets Xp

and Xq respectively. That is, p(x) or q(x) denote the respective probabilities, which are
strictly positive unless x ”œ Xp for which p(x) = 0 (or similarly x ”œ Xq for which q(x) = 0).

A key measure for the proximity between the distributions p(·) and q(·) is the Kullback–Leibler
divergence, also shortened as KL-divergence, and also known as the relative entropy. It is
denoted DKL(p Î q) and as long as Xp ™ Xq it is the expected value of log p(X)/q(X) where
X is a random variable following the probability law p(·). Namely,

DKL(p Î q) =
ÿ

xœXp

p(x) log p(x)
q(x) . (B.1)

Further if Xp ”™ Xq, that is if there is some element in Xp that is not in Xq, then by definition
DKL(p Î q) = +Œ. This definition as infinity is natural since we would otherwise divide by
0 for some q(x).

Observe that the expression for DKL(p Î q) from (B.1) can be decomposed into the di�erence
of H(p) from H(p, q) via,

DKL(p Î q) =
ÿ

xœX
p(x) log 1

q(x)
¸ ˚˙ ˝

H(p,q)

≠

ÿ

xœX
p(x) log 1

p(x)
¸ ˚˙ ˝

H(p)

.
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B Cross Entropy and Other Expectations with Logarithms - DRAFT

Here,
H(p, q) = ≠

ÿ

xœX
p(x) log q(x) (B.2)

is called the cross entropy of p and q and

H(p) = ≠

ÿ

xœX
p(x) log p(x) (B.3)

is called the entropy of p. Hence in words, the KL-divergence or relative entropy of p and q is
the cross entropy of p and q with the entropy of p subtracted. Note that in case where there
are only two values in X , say 0 and 1, where we denote p(1) = p1 and q(1) = q1, we have

H(p) = ≠
!
p1 log p1 + (1 ≠ p1) log(1 ≠ p1)

"
, (B.4)

H(p, q) = ≠
!
p1 log q1 + (1 ≠ p1) log(1 ≠ q1)

"
. (B.5)

Some observations are in order. First observe that DKL(p Î q) Ø 0. Further note that in
general DKL(p Î q) ”= DKL(q Î p) and similarly H(p, q) ”= H(q, p). Hence as a “distance
measure” the KL-divergence is not a true metric since it is not symmetric over its arguments.
Nevertheless, when p = q the KL-divergence is 0 and similarly the cross entropy equals the
entropy. In addition, it can be shown that DKL(p Î q) = 0 only when p = q. Hence the
KL-divergence may play a role similar to a distance metric in certain applications. In fact,
one may consider a sequence q(1), q(2), . . . which has decreasing DKL(p Î q(t)) approaching
0 as t æ Œ. For such a sequence the probability distributions q(t) approach1 the target
distribution p since the KL-divergence convergences to 0.

The KL-divergence for Continuous Distributions

The KL-divergence in (B.1) naturally extends to arbitrary probability distributions that are
not necessarily discrete. In our case let us consider continuous multi-dimensional distributions.
In this case p(·) and q(·) are probability densities, and the sets Xp, and Xq are their respective
supports. Now very similarly to (B.1), as long as Xp ™ Xq we define,

DKL(p Î q) =
⁄

xœXp

p(x) log p(x)
q(x) dx. (B.6)

The Jensen-Shannon Divergence

A related measure to the KL-divergence which is symmetric in arguments is the Jensen-
Shannon divergence denoted JSD(p Î q). Either for the discrete or continuous case, is defined
by considering a mixture distribution with support Xp fi Xq,

m(x) = 1
2

!
p + q

"
,

and then averaging the KL-divergence between each of the distributions and m(·), namely,

JSD(p Î q) = DKL(p Î m) + DKL(q Î m)
2 . (B.7)

1There are multiple ways to define convergence of such a sequence of probability distributions. The exact
form is out of our scope.
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B.2 Computations for Multivariate Normal Distributions

The square root of JSD(p Î q), sometimes called the Jensen-Shannon distance is a metric in
the mathematical sense.

B.2 Computations for Multivariate Normal Distributions
A univariate (single variable) normal, or Gaussian, distribution has a probability density
function,

N (x ; µ, ‡2) = 1
‡

Ô
2fi

e≠ (x≠µ)
2

2‡2 , for x œ R,

and is parameterized by µ œ R and ‡2 > 0 which are the mean and variance of the
distribution respectively. The standard normal case has µ = 0 and ‡2 = 1.

An m dimensional multivariate normal distribution is characterized by a mean vector µ œ Rm

and a covariance matrix � œ Rm◊m which is assumed to be symmetric and positive definite.
The probability density function (pdf) of a multivariate normal distribution is,

N (x ; µ, �) = 1
(det �)1/2(2fi)m/2 e≠ 1

2
(x≠µ)€�≠1(x≠µ), for x œ Rm,

where det � stands for the determinant of a matrix �. There are many useful formulas
associated with this distribution with one particular case being the log-density,

log N (x ; µ, �) = ≠
1
2(x ≠ µ)€�≠1(x ≠ µ) ≠

m

2 log(2fi) ≠
1
2 log(det �). (B.8)

It is also useful to consider the KL-divergence between two multivariate normal distributions.
For short, denote such a distribution as Nµ,� when the mean vector is µ and the covariance
matrix is �. Then if we consider two such distributions on Rm with corresponding mean
vectors µ1 and µ2, and corresponding covariance matrices �1 and �2, then it is possible to
show that,

DKL(Nµ1,�1
Î Nµ2,�2

) = 1
2

1
(µ1 ≠µ2)€�≠1

2 (µ1 ≠µ2)≠m+tr(�≠1
2 �1)+log det(�2)

det(�1)

2
. (B.9)

A particularly useful case is one where �2 = ‡2
2I for some constant ‡2

2 > 0. In this case,

DKL(Nµ1,�1
Î Nµ2,‡

2

2
I) = 1

2‡2
2

Îµ1 ≠ µ2Î
2

≠
m

2 + tr(�1)
2‡2

2
+ m log ‡2

2
2 ≠

log det(�1)
2 . (B.10)

Furthermore, if the second distribution is standard, i.e., µ2 = 0 and ‡2
2 = 1, then

DKL(Nµ1,�1
Î N0,I) = 1

2Îµ1Î
2

≠
m

2 + tr(�1)
2 ≠

log det(�1)
2 . (B.11)
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