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1 Introduction - DRAFT

Many methods and techniques of deep learning have been known for a long time. However,
it is only recently that deep learning became a field of its own. At its core, deep learning is a
collection of models, algorithms, and techniques, such that when assembled together, e�cient
automated detection and decision making can take place. Trained deep learning models
are able to detect, classify, translate, create, and take part in systems that execute simple
human like tasks and beyond. The basic building block of deep learning is the artificial
neural network, or neural network for short. Deep learning is all about defining, training,
and using such objects, often with multiple layers - hence the term “deep”.

While most of this book is about the mathematical engineering of deep learning, this
introductory chapter takes a more general viewpoint. It aims to introduce the field and the
terminology in broad terms. In Section 1.1 we introduce deep learning by discussing the
general nature of the field and key terms involved. We continue in Section 1.2 where we
present an overview of some of the most popular tasks and their associated deep learning
architectures. These architectures then re-appear in detail in the remainder of the book.
In Section 1.3 we discuss key ingredients of the field. It is here where we briefly touch
on connections between deep learning and neuroscience, discuss computation power, and
discuss the availability of large datasets. In the remainder of the book, since our focus is on
mathematical formulation, these topics are seldom considered, yet we consider them here
for completeness. In Section 1.4 we introduce common openly available datasets that are
often used to train deep learning models, both in practice and industrially. In Section 1.5
we introduce the concept, mathematical engineering of deep learning which is behind
the title of this book. We close with Section 1.6 where we introduce common mathematical
notation used in the book.

1.1 The Age of Deep Learning
Classically, computers can be programmed to do complicated repetitive tasks very well. This
includes automating calculations, sorting and filtering data, finding shortest paths between
two locations on a map, and even executing extremely complicated weather simulations.
For many of these tasks, one may consider specialized, well-defined algorithms whose
specification is detailed by a sequence of steps including logical expression evaluation,
conditional statements, iteration, and similar constructs.

With such a classical algorithmic approach, software can carry out computational tasks in a
faster and more accurate manner than any living creature. No human can sort a large list of
numbers faster than a computer, and no dog or other non-human animal can be expected to
reliably sort numbers at all. However humans and other animals are able to think! This is
something that computers (still) cannot do. On a more elementary level, many living beings
can quickly learn to determine types of objects based on their appearance, sound, feel, or
smell in a manner that up to recently was not possible by a machine.
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1 Introduction - DRAFT

The key here is recently. The second decade of the 21st century has witnessed incredible
advances in the ability of computers to carry out (simple) human-like tasks. These include
interpretation of images, voice, and text, learning how to execute smart decision making in
uncertain environments such as playing games like Go, and highly impressive conversational
agents which can communicate with humans in ways that appear human. The main vehicle
for this success is deep learning.

The general computational area dealing with algorithms for classification, prediction, and
decision making based on data is generally called machine learning. It has been around since
the late 1950’s together with the general phrase of artificial intelligence. Machine learning
often involves programmed statistical techniques for tuning parameters of algorithms based
on data, so that later when used on unseen data, the algorithms hopefully work well. There
are dozens if not hundreds of well developed machine learning techniques and models. One
class of models involves artificial neural networks which have recently also become known as
deep learning.

Up to about 2010, deep learning models were generally perceived as just another class of
machine learning models, which while being interesting, in many cases were often not the
most successful or insightful tools to use. However, together with the advent of large collected
datasets and the availability of GPUs (graphical processing units), deep learning has emerged
as the norm in the machine learning world rather than the exception. There are now tens
of thousands of companies around the world that are deploying and developing automated
applications that use deep learning technology. Indeed, the emergence of deep learning has
brought artificial intelligence and machine learning to the forefront of technology and it is by
now an integral part of almost any application. Many human like tasks which include image
processing, voice analysis, as well as dealing with general complex datasets, are handled
exceptionally well by deep learning techniques.

The world of machine learning (ML), artificial intelligence (AI), and deep learning (DL) is
often characterized via multiple competing terms. In addition to ML, AI, and DL which
are often used interchangeably, other key terms include data science and statistics. Related
terms that have somewhat stepped out of the spotlight include statistical learning, data
mining, and big data (analytics). When considered in isolation, each of these terms may be
broadly defined with a slightly di�erent meaning. However, when considered together there
are significant intersections between the fields and meanings of the terms. One general way
to describe the key terms is to say that DL is a suite of very popular ML techniques
which power much of today’s AI. Further, DL is one of the key components in the
tool-box of data science and complements more traditional (as well as new and novel)
methods from statistics. We generally do not use the ML, AI, and DL acronyms further in
the book but rather use the general term deep learning to describe almost all of the methods
and activities in the field.

A First Dive Into Deep Learning

A deep learning model is a very versatile function, denoted as f◊(x), where the input x is
typically high dimensional and the parameter ◊ is high dimensional as well. The function
returns an output y = f◊(x), where y is typically of significantly lower dimension than both
◊ and x. Given large datasets comprised of many x inputs matching desired outputs y, it is
often possible to find good parameter values ◊ such that f◊(·) approximately satisfies the
desired relationship between x and y. The process of finding such ◊ is called training or
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1.1 The Age of Deep Learning

learning. Once trained, the model f◊(·) can be applied to unseen input data, x, with a hope
of making good predictions, classifications, or decisions.

Depending on the application, the input data x can be in the form of an image, text, a
sound waveform, tabular heterogeneous data, or some other variant. The output data y can
be the probability of a label indicating the meaning/content of the image, a numerical value,
or an object of similar form to x such as translated text in case that x is text, a masked
image in case that x is an image, or similar.

Focusing on vision (images) for our initial example, one very popular source of data is the
ImageNet database which has been used for the development and benchmarking of many
deep learning models. The database has nearly 15 million color images. In many models a
subset of about 1.5 million images are used for training where the basic form of y is given
by a label which is one of 1, 000 categories indicating the content of the image. More on
ImageNet is in Section 1.4 where we outline other popular datasets as well.

To get a feel for a deep learning model f◊(·), consider the VGG19 model1 which is one
of several popular (now classical) deep learning models for images. For this model, x is a
224 ◊ 224 color image. It is thus comprised of 3 ◊ 224 ◊ 224 = 150, 528 values, with every
coordinate of x representing the intensity of a specific pixel color (red, green, or blue). The
output y is a 1, 000 dimensional vector where each coordinate of the vector corresponds to
a di�erent type of object, e.g., car, banana, etc. The numerical value of the coordinate yi,
where say i is the index which matches banana is the model’s prediction of the probability
that the input x is a picture of a banana.

Ideally when fed with an input image x of a banana, the output y = f◊(x) will have yi

as a high probability value e.g., 0.85 for i = banana, while the other yj for j other than
banana will be low. This then allows one to use f◊(·) to classify bananas and other objects
by choosing the label (banana, car, etc...) with the highest output probability yi. Such a
machine learning task is called classification.

At around the year 2014 when VGG19 was introduced, it was fed about 1.5 million ImageNet
images, x, each with a corresponding label, e.g., banana, which is essentially a desired output
y. The process of training VGG19 then involved finding good parameters ◊ so that when
the model is presented with a new unseen image x, it predicts the label of the image well.
Note that in VGG19, ◊ has a huge number of parameters; 144 million!

So to recap, there were about 1.5 ◊ 106 input data samples each of size of about 1.5 ◊ 105

(pixel values). Hence the training data size has about 2.25 ◊ 1011 values (numbers). This
data was then used to learn about 1.44 ◊ 108 parameters. This is a-lot of data, and a-lot of
trained parameters, but the resulting trained VGG19 model, f◊(·), works well. At the time
when this specific model was introduced it took days to train and much longer to fine tune.
Today such a model may take around 8 hours to train on current state of the art hardware
and software. Further, it can take about a fifths of a second to make a prediction with this
model, that is to evaluate f◊(x). This is not an insignificant duration and can be improved
upon by other models.

1Note that we only chose the VGG19 model here as an illustration. More e�cient modern models are
discussed later in the book, with image models discussed specifically in Chapter 6.
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1 Introduction - DRAFT

(a)

(b)

(c)

(d)

(e)

Figure 1.1: Illustrative fast.ai Python code for training (fine tuning) a VGG19 model to recognize
fruits. The VGG19 model was originally trained using ImageNet and this pre-trained model is easily
downloaded. Retraining this model from scratch using ImageNet would take several hours. Instead,
in this example VGG19 is adapted to data from the Fruits 360 dataset. This adaptation takes about
10 minutes using a GPU. We then use the trained model on a single ad hoc image of a banana and
it is correctly classified as Banana Lady Finger.

As a matter of illustration Figure 1.1 presents code that uses the VGG19 model which was
previously trained on ImageNet. This training of VGG19 from scratch on ImageNet is not
something one would typically do in practice. Instead, we use the pre-trained VGG19 model
parameters and adapt them based on another dataset called Fruits 3602 which has nearly
100, 000 images of fruits, most of which were taken with repetitions by rotating a single
fruit of each type and taking pictures at di�erent angles. Here we use the fast.ai library
with the Python language which also uses PyTorch under the hood. However, we could have
presented alternatives with other languages (e.g., Julia or R) as well as other deep learning
libraries such as for example Keras which uses TensorFlow. Indeed, there are many books
dealing with deep learning libraries and code with notable ones mentioned in the notes and
references at the end of the chapter. This current book is not about using such libraries and
the practicalities of deep learning, it is rather about the concepts and key ideas.

In Figure 1.1 (a) we present setup code including downloading Fruits 360 from Kaggle.
See also Section 1.4 where we discuss publicly available datasets. In (b) we present a few
Fruits 360 images and their labels. In (c) there is the actual code and output needed for
training (fine tuning) of the pre-trained VGG19 model (models.vgg19_bn) using fast.ai’s
fine_tune() method. This takes about 10 minutes to execute. This practice is called transfer
learning and is also known as fine-tuning. In (d) we present an example banana image not
related to the Fruits 360 dataset. Finally in (e) we execute model prediction using fast.ai’s
learn.predict() method where the probability associated with Banana Lady Finger is
highest among all possible fruits. It is highlighted in index 17. This code takes a fraction of

2See https://www.kaggle.com/datasets/moltean/fruits.
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1.1 The Age of Deep Learning

a second to execute. We note that Figure 1.1 is the first and last example in this book that
includes computer code.

Beyond Classification

Deep learning models can be used to perform various forms of tasks. The classification task
described above is one type of these tasks and is often considered the most basic task. Other
tasks include regression where y is a numerical value associated with x which needs to be
predicted. Chapter 2 presents an introduction to regression and classification tasks in the
context of general machine learning, together with an overview of other aspects of machine
learning.

There are many more involved tasks as well. One example in the context of image data is
localization where the goal is to determine the location of an object within an image. This
task can also be handled by a variant of VGG19 where the input data is still a 3 ◊ 224 ◊ 224
image but the output data y encodes the location of an object in the image (as well as
possibly the type of object). Such a model is no longer f◊(·) above, but some other function,
say f̃

◊̃
(·). While the models di�er, one of the useful things about deep learning is that the

parameters ◊ for the classification task and the parameters ◊̃ for the localization task are
often similar and the bulk of the training e�ort can be used to learn both ◊ and ◊̃.

(a)

(b)

Figure 1.2: Di�erent types of image tasks.3 (a) Semantic segmentation of images. (b) Object
detection and localization.

In the context of images other tasks include semantic segmentation where all individual
pixels of the input image x are marked as belonging to specific categories or classes. In
such a case, y is of a similar form to x since it includes an indication of the class of each
individual pixel. This case also clearly requires training data where each individual input

3Image (a) is attributed to B. Palac under the creative commons license and available via Wikimedia
Commons. Image (b) is thanks to “You Only Look Once: Unified, Real-Time Object Detection” by J.
Redmon, S. Divvala, R. Girshick, and A. Farhadi, [346].
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1 Introduction - DRAFT

pixel is considered. See for example Figure 1.2 (a). Further one may wish to identify multiple
objects in an image as in Figure 1.2 (b). There are other tasks as well when considering
text, video, sound, or tabular data and these are discussed in Section 1.2 and throughout
the book.

Deep Learning: Where is it Applied?

If you are reading this book then you probably already know that deep learning is applied
in many diverse contexts. By around the time of publication of this book, many automated
systems that involve sensing of noisy data already use some variant of deep learning. Many
statistical modeling arenas also make use of deep learning. And finally, at the time of
publication of this book, some mundane programming or writing tasks are beginning to be
replaced by deep learning.

A medical doctor’s decision can be viewed as y = f◊(x). Here x may be the full medical
history of the patient, or more specifically it may be the pixel information of medical imaging.
In this context, y may simply be an indication of benign vs. malignant or may involve
more complicated outputs such as rest for one week and then get checked up again.
On much smaller time scales, the steering wheel actions of a driver are also of the form
y = f◊(x). Here x can be based on the fusion of multiple sensory data of a car and y is
the steering command. Similarly, a farm worker that decides which tomatoes to pick today
and which to wait on also repeatedly uses a relationship of the form y = f◊(x). The same
goes for automated voice recognition systems, for determination of the importance of text
messages, and for comprehending hand written text or hand written mathematical equations.
Even the task of converting a prompt such as please write code for creating a web

server for e-commerce for..., can be carried out via deep learning where the output is
a complete set of actions that create the web-server.

In all of these application domains a trained human makes decisions based on sensory inputs
and determines an outcome. It is true that other statistical and machine learning techniques
for y = f◊(x) may also do the job instead of deep learning. However, experience of the
past decade has shown that with ample training data and multiple features, deep learning
methods work exceptionally well and in many cases surpass the performance of other machine
learning methods such as support vector machines, random forests, or other methods.

Who are the Personas Involved?

Due to its success, deep learning has been dubbed the “new electricity”. If that is the case
then who are the “new electricians”? The answer to this question is still evolving because
the age of deep learning has just begun. Nevertheless we can try and answer this question
based on where deep learning stands as of 2024. As a first go you may use general labels
such as data scientists, statisticians, computer scientists, and machine learning engineers.
People that train deep learning models would probably classify themselves as one of these.
If their work involves using modeling to make predictions, gain business insight from data,
or help finding scientific relationships between variables then the “data scientist” label is
probably most appropriate. Further, if they use more statistical rigour for model selection
and making conclusions then “a statistician” is probably the right persona classification to
use. This is especially true when the work of individuals involves experimental design and
analysis of experimental data. Finally, if the work involves training and integrating deep

6



i
i

i
i

i
i

i
i

1.2 A Taste of Tasks and Architectures

learning solutions in software, then a “machine learning engineer” is probably the correct
description.

In terms of research and core development of ideas, many of the developers of deep learning
ideas and technology are probably rightly called “computer scientists”. Computer science is
obviously a broad field which at one extreme deals with the discrete mathematical theoretical
questions such as P

?= NP , and at the other extreme includes ideas from artificial intelligence
pioneers such as Frank Rosenblatt, the initial creator of the perceptron in the 1950’s and many
others that worked on neural networks during the second half of the 20th century. In recent
years computer scientists responsible for the deep learning revolution include names4 such
as Yann LeCun, Yoshua Bengio, Geo�rey Hinton and many others. Other important names
related both to development of ideas, development of software, and education include Ian
Goodfellow, Jeremey Howard, and Andrew Ng. These individuals, together with thousands
of others, are responsible for recent advances and education of deep learning that made
it what it is today. Most of these researchers would probably feel comfortable with the
title “computer scientists”, however you will also find “mathematicians”, “statisticians”, and
“neuroscientists” heavily involved.

In addition to some of the deep learning pioneers mentioned above, many researchers from
other domains are also now focusing heavily on deep learning. This involves experts from
the world of pure mathematics, probability, statistics, information theory, and control theory.
In the years to come we may witness development of theoretical results that describe deep
learning; what works, what does not, and why. The focus of this book is not on such
theoretical results. Our focus is rather on mathematical engineering, a phrase that we define
in Section 1.5 below.

1.2 A Taste of Tasks and Architectures
A reader completing this book is to gain a mathematically aided understanding of deep
learning. This includes understanding deep learning model architectures designed for a
variety of tasks as well as an understanding of the motivation behind several architectural
choices. Further, since deep learning architectures and their training algorithms go hand in
hand, the journey also encompasses key methods used to train such models.

To get a feel for the models and methods covered, we now present an overview of the key
tasks and architectures. Figure 1.3 presents schematics which include the simplest deep
models called feedforward fully connected neural networks5; autoencoders which combine
such feedforward networks with an encoder and a decoder; convolutional neural networks
useful for image analysis; recurrent neural networks useful for sequence data; transformer
models useful for large language models and other applications internally using the attention
mechanism and also utilizing an encoder and decoder like autoencoders; di�usion models
that are useful for image generation; generative adversarial network architectures also useful
for fake data generation; and the paradigm of reinforcement learning useful for control of
dynamic systems.

4In general this book aims to minimize historical notes, yet you may find more historical information in
the notes and references at the end of this chapter.

5Such models are also known as fully connected networks, feedforward networks, or dense neural networks

where each of these terms may also be augmented with the phrase “deep” as well as the phrase “general”.
Another name for such models is multi-layer perceptrons (MLP).
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Figure 1.3: Illustrations of some common deep learning architectures and paradigms: (a) Feedfor-
ward fully connected neural networks covered in Chapter 5. (b) Autoencoders with shallow versions
covered in Chapter 3. (c) Convolutional neural networks covered in Chapter 6. (d) Recurrent
neural networks covered in Chapter 7. (e) Transformer architectures with an encoder and repeated
application of a decoder covered in Chapter 7. (f) Di�usion models for image generation covered in
Chapter 8. (g) Generative adversarial networks covered in Chapter 8. (h) Reinforcement learning
covered in Chapter 8.
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1.2 A Taste of Tasks and Architectures

Feedforward Fully Connected Neural Network

The most basic deep neural network is the feedforward fully connected neural network. It is
illustrated in Figure 1.3 (a) and covered in detail in Chapter 5. Simple special cases of this
network are the linear model, analyzed in Chapter 2, as well as logistic regression (sigmoid)
and multinomial regression model (softmax), both covered in Chapter 3.

Mathematically, feedforward fully connected neural networks are simply combinations of
a�ne (linear) transformations and non-linear activation functions. They constitute a very
basic mechanism for enhancing the classical linear model with non-linearities. It turns
out that this enhancement gives the model, f◊(·), an incredible ability to express complex
relationships, y = f◊(x), while supporting an algorithmically tractable way of finding ◊
(training). Classically these models are also called multi-layer perceptrons since they are
descendants of the first ever neural network model, the perceptron, developed by Frank
Rosenblatt in the late 1950’s.

This architecture is useful for tasks such as classification, regression, or feature extraction.
The models provide a highly expressive ability, which is especially useful when the data
does not have a specific structure. While the models are heavily parameterized, they often
work well for such ad-hoc tasks. Components of these networks, called fully connected layers,
can also be components of more complex architectures such as convolutional networks,
transformer models, and others.

Understanding training of these feedforward fully connected architectures, where gradients are
computed via the famous backpropagation algorithm, covered in Chapter 5 (after automatic
di�erentiation is introduced in Chapter 4), is key to understanding the essence of deep
learning. Fully connected networks are also useful for understanding key ideas such as
dropout, batch normalization, and weight initialization, which are all at the heart of deep
learning.

Autoencoders

A simple fully connected deep autoencoder architecture is illustrated in Figure 1.3 (b). Shallow
variants of this paradigm are studied at the end of Chapter 3. In many cases one may wish
to use the internal representation of the architecture to extract meaningful features from
the inputs. This is called feature extraction and we call the outputs of this process computed
features or derived features. After carrying out feature extraction, the computed features
may then be transformed into outputs, used for clustering the data, or used for other
manipulations of data.

Variants of architectures that make use of feature extraction fall under the name of encoders
since they encode inputs into computed features; decoders since they decode computed
features to outputs; as well as autoencoders since these architectures combine the tasks with
an aim of having an output which matches the input. Particularly with an autoencoder,
the goal is to find parameters ◊, such that x = f◊(x) is (approximately) maintained. The
application of encoders, decoders, and autoencoders to di�erent tasks is omnipresent in deep
learning architecture design. There are hundreds of applications and variations with a few
applications outlined at the end of Chapter 3.
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1 Introduction - DRAFT

Convolutional Neural Networks

The VGG19 model used in the discussion of Section 1.1 is one example of a convolutional
neural network architecture. This class of models is illustrated in Figure 1.3 (c) and is covered
in detail in Chapter 6. These types of models constitute the most famous specialization of
fully connected neural networks. Convolutional models are primarily used for image analysis
and it is fair to say that their recent success has shu�ed the cards in the broad field of
image processing. Beyond images, these models can be adapted for other domains such as
radiology data or audio. As alluded to in Section 1.1, in the context of images, there are
multiple related tasks including classification, semantic segmentation, and localization, and
all of this can be handled via convolutional neural networks.

Convolutional neural networks can be viewed as adaptations of fully connected networks,
where the action of each layer is not based on the full connections between activations but
rather on smaller trainable convolutions. These convolutions maintain a spatially homogenous
structure in the network. Such a setup significantly reduces the number of parameters, enables
deeper architectures, and most importantly capitalizes on spatial relationships present in
the input. As a consequence, for a similar size of ◊ (e.g., 144 million parameters as in the
VGG19 model), one may have a much deeper architecture than would have been possible
with a fully connected network. This results in training that is much more e�cient and the
model is more e�cient in production as well.

In addition to the core trainable convolutions idea, convolutional networks introduce addi-
tional architectural concepts such as the use of channels and the use of pooling. Huge leaps
with convolutional neural networks were made during the first half of the second decade of
this century. The incredible success of the so-called AlexNet model in the 2012 ImageNet
challenge boosted neural networks within the world of machine learning. This in many ways
started the deep learning revolution and put deep learning at the forefront of ML after the
field was on the sidelines for many years.

Recurrent Neural Networks, LSTMs, and GRUs

Figure 1.3 (d) illustrates a recurrent neural network where on the left side of (d) we see
the basic architectural components and on the right side we see what is called an unfolded
representation of the network, illustrating its recursive operation. While key advances during
2010–2015 were in the convolutional domain focusing on images, the second half of that
decade witnessed deep learning becoming an integral part of natural language processing
(NLP). By today, automatic translation engines, language generation models, and other
solutions for tasks associated with text almost always involve deep neural networks or are
entirely based on deep learning models. The use of recurrent neural networks is the most
rudimentary modeling paradigm for such purposes. These models are covered extensively in
Chapter 7.

There are multiple variations of recurrent neural networks where the most basic one is
illustrated in Figure 1.3 (d). However, the internal structure can vary and some popular and
powerful variations include long short term memory (LSTM) models and gated recurrent unit
(GRU) models. These architectures, also surveyed in Chapter 7, have been very impactful.
In addition to NLP, there are many other domains where such models for sequence data is a
natural choice. These domains include genomic sequencing, multivariable time series, audio,
and even video.
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1.2 A Taste of Tasks and Architectures

Transformers and the Attention Mechanism

It is probably fair to say that the greatest advances in deep learning at the start of the third
decade of the current century are centered around large language models. These systems,
including the highly popularized ChatGPT service, among others, are able to execute many
language tasks and are reshaping our view on intelligence at large. To date, the underlying
model in most of these systems is the transformer architecture. Figure 1.3 (e) is a loose
sketch of how such an architecture engages in the task of machine translation, i.e. translating
from one human language to another. The reader should keep in mind that the illustrated
encoder and decoder blocks are each composed of multiple sub components (not appearing
in the figure). Some of these components include feedforward layers as in Figure 1.3 (a), and
other components are based on a concept called the attention mechanism. The full details of
the attention mechanism and transformer models are in Chapter 7.

Large language models that use transformers appear to comprehend and generate human-
like text. They engage in natural language understanding, extracting information from
textual data, answering questions, and providing contextually relevant responses. Machine
translation, our core example activity of Chapter 7, can also be handled by large language
models. Beyond machine translation, large language models are versatile as they can handle
multiple tasks including summarization of text, facilitating e�cient communication across
diverse languages, and more. Recent advances also include multimodal models which handles
text, images, and other formats both as input and output.

Di�usion Models and other Variational Autoencoders

In Figure 1.3 (f) we see a schematic of a di�usion model which here simply appears as a
process of either adding noise to an image in an encoder or alternatvily removing noise from
an image with a decoder. The overarching idea of a di�usion model is to learn not just how
to add noise, but also how to create an image out of noise. With this, a trained decoder can
generate realistic looking images that are actually random. Di�usion models recently arose
as extremely powerful image generation models and are able to generate images that are
both realistic looking and highly creative in their style and nature.

Di�usion models and their generalizations are probabilistic in nature. The complete details
are in Chapter 8 where we first describe variational autoencoder models, then modify them
to a class of models called hierarchical Markovian variational autoencoders of which di�usion
models are a special case.

Generative Adversarial Networks

A generative adversarial network (GAN) architecture is illustrated in Figure 1.3 (g) and
introduced in Chapter 8. Like di�usion models, GANs are very useful for creating random
data that is realistic in nature. The rise and popularity of GANs predated that of di�usion
models and today GANs and di�usion models compete for the state of the art in artificial
data generation. GANs and di�usion models di�er in their architecture and analysis. While
di�usion models are probabilistic, the analysis and study of GANs is close to the field of
game theory.

The key idea of a GAN is to simultaneously train two deep neural networks, a generator and
a discriminator. The former generates fake data, while the latter attempts to determine if
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1 Introduction - DRAFT

the data is fake or real. As the training of both of these networks progresses, the generator
is ultimately able to fool the discriminator and as a consequence, it also creates “real looking”
data. Much of the choice of architecture is then with finding measures of the quality of the
data in the discriminator as well as with the algorithms for jointly training these networks.

Deep Reinforcement Learning

In Figure 1.3 (h) we illustrate the paradigm of reinforcement learning. Here the basic setup
is that a system, or environment, is controlled by an agent. For example, one may think of
the environment as a home, and the agent as a cleaning robot traversing and cleaning the
home. As time progresses, the agent makes decisions in the form of actions, for example
move right 5 cm, and these are interfaced with the environment. The agent in turn receives
reward from the environment as well as observations, where the reward is a mechanism that
helps to drive towards better goals, for example “cleaning in a quick and energy e�cient
manner”, and the observations can include sensory input. The goal of reinforcement learning
is to develop meaningful ways for the agent to choose actions.

One of the great leaps of AI during the second decade of this century is in the game of Go;
see references at the end of this chapter. This strategic board game was long considered
much more di�cult “to program” in comparison to other games such as Chess.6 Yet in 2015
a team from DeepMind through a series of advances and competitions designed a system
called AlphaGo which beat the world’s best Go players. This highly publicized achievement
made the dream of artificial intelligence a bit more concrete by showing the ability of neural
networks to solve complicated tasks. The key ideas of this achievement are from the field of
reinforcement learning. We outline basic ideas in Chapter 8.

Graph Neural Networks

An additional category of neural network models that we explore in Chapter 8 are graph
neural networks. These models operate on graphical structures, i.e., nodes and edges with
attributes. Graph neural networks are suitable for social networks data, for the study of
chemical compounds, and for many other applications where relationships between entities
are well described via graph structures. In contrast to other types of neural networks, graph
neural network models are often not directly used to try and mimic human level performance
but rather for discovery and insight within data.

1.3 Key Ingredients of Deep Learning
Having gotten a taste of deep learning, we now discuss the key ingredients that leverage its
success. These are notably the availability of large datasets, advances in computer architec-
tures, advances in software, the internet, and the interplay of cognitive science and artificial
intelligence research. While the remainder of the book focuses on the mathematical descrip-
tion of deep learning, this section aims to overview the non-mathematical key ingredients
which are attributed to the success of the field.

6Computers have shown their superiority in the game of Chess since the mid 1990’s with a notable victory
of the Deep Blue Chess playing expert system defeating the champion Garry Kasparov over a six-game
match in 1996.
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1.3 Key Ingredients of Deep Learning

Neural Networks as Artificial Brains?

Brains are composed of (biological) neurons that are interconnected in unstructured ways; see
Figure 1.4 where display (a) illustrates a single biological neuron and display (c) illustrates
an interconnected network of biological neurons. A human brain has an estimated 85 billion
neurons. A single human action such as movement of an arm may induce the firing of around
80 million such neurons, whereas the identification of a visual object may use the bulk of
the estimated 150 million neurons that are in the visual cortex. Unquestionably, brains are
fascinating organs whose scientific understanding, while still at its infancy, will undoubtedly
grow in the years to come and have profound a�ects on human endeavour.

Deep neural network models are neither brains nor attempts to create artificial brains.
Nevertheless, the development of these models is highly motivated by the biological structure
of the brain. The basic building block of a deep neural network model is the (artificial)
neuron abstracting the synapse connection between neurons via a single number called an
activation value. See display (b) of Figure 1.4 for a single (artificial) neuron and display
(d) which presents a combination of multiple neurons as part of a feedforward (artificial)
neural network similar to Figure 1.3 (a). Pioneering and landmark work in AI research was
inspired by neuroscience since brains are essentially the only complete proof we have for the
existence of what we call “general intelligence”. Further, many tasks of deep learning models
involve the mimicking of human level (or animal level) tasks such as understanding images
or conversational tasks. Thus for example one of the most well-known benchmarks in the
world of artificial intelligence is the Turing test, originally named the imitation game when
introduced by Alan Turing in 1950. It is essentially a test to see if a computer can engage in
long conversation with a human, without another observing human distinguishing between
the computer and the human.

At the time of publishing of this book, the state-of-the-art large language models are on the
verge of passing the Turing test and in fact, researchers are seeking alternative more suitable
criteria. This is because while the test may appear to be (nearly) achieved, it is still believed
that these language models do not constitute general intelligence. In fact, artificial general
intelligence (AGI) systems are at best at their infancy. Deep learning models generally only
achieve narrow tasks such as pattern recognition, conversational agents, or playing specific
games, as opposed to general intelligence tasks of creative problem solving. Nevertheless,
large language models of 2024 and onwards appear to be very powerful in multi-modal
activities.

With both the fields of neuroscience and AGI still awaiting major breakthroughs, it is natural
for researchers to continue to draw parallels between neuroscience and artificial intelligence.
On the cognitive sciences side of the spectrum an increasing number of researchers are making
use of artificial neural networks as abstractions for understanding cognitive tasks. However
on the AI side of the spectrum, while in the early years, neuroscientific-motivated models
were central, today they have become more of a niche research area. In our context, the
mathematical description of deep learning in this book is completely agnostic to biological
brains.

7Image (a) is attributed to B. Blaus under the creative commons license and available via Wikimedia
Commons. Image (c) is sourced from pixabay.com.
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Figure 1.4: Biological and artificial neurons and networks.7 (a) A single biological neuron. (b) A
neuron in an artificial neural network. (c) Connection of multiple biological neurons in a brain. (d)
An artificial neural network connecting multiple neurons in a feedforward structured manner.

Computational Power

It is well known that deep learning models require fast computers with plenty of memory.
Training deep learning models can take hours or days using current state of the art hardware
and would not have been practically possible on machinery of the 1990’s or earlier. Similarly,
the large scale application of (trained) deep learning models, such as for example in self
driving cars, requires massive resources as is attested by the fact that the power consumption
for computing in a self driving car can sometimes equate or exceed the power used by the
engine. At around the first decade of the 21st century a technological threshold was passed
and the availability of fast computing hardware made earlier deep learning ideas realizable
and successful.

A complete description of hardware advances and their relationship with deep learning is
beyond our scope and is not the focus of this book. Indeed, practical machine learning
engineers often need to consider the computing power and hardware at play to train
or implement e�ective deep learning models. A core component that has made a huge
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1.3 Key Ingredients of Deep Learning

di�erence to the field is the development and availability of graphical processing units
(GPUs). In contrast to standard central processing units (CPUs) which are optimized for
logical operations, branching, and general computations, GPUs are optimized for repetitive
large scale matrix operations and can execute deep learning training or prediction in the
order of 20 to 200 times faster than state-of-the-art CPUs. The GPU industry initially grew
due to demand from the video gaming market, however by 2020 their importance in the AI
revolution is well understood. Today the needs of deep learning influence the design and
development of future generation GPUs. In summary it is fair to say that without GPUs,
deep learning would not be anywhere where it is today.

For example, the aforementioned success of the so-called AlexNet model in the 2012 ImageNet
challenge, was based on a neural network model specifically designed to be trained on two
parallel GPUs which were the state of the art of the time. From a programming perspective,
utilizing such GPUs required considerable e�ort at that time but since then they have become
much more accessible with better software. In the past decade, more specialized computing
systems, including GPUs, the similar tensor processing units (TPUs), and dedicated driver
software were specifically adapted for deep learning applications. Indeed today, a machine
learning engineer engaging in deep learning almost always needs to make use of such tools.
Also central in this arena is the availability of cloud computing. Today many deep learning
applications use dedicated cloud computing services both for training and model application.

For light applications including scientific machine learning with small datasets, or for
pedagogical purposes, one may often use non-GPU machines (as well as laptops). See the
notes and references at the end of the chapter for recommended reading of applied deep
learning.

Large Datasets

Deep learning models work exceptionally well in cases where input data has a lot of features,
a setting that is loosely called high dimensional. In a more statistical context a proper
definition of high dimensionality is that the number of features exceeds the number of
datapoints. However, in deep learning, such a distinction is not common. Large datasets
with many samples are ubiquitous and often critical to the success of deep learning.

Large enough and annotated datasets were rarely available prior to the turn of the century,
yet in recent times humanity has witnessed an explosion of the volume of data stored. As
a general guide consider Figure 1.5 showing a projection of the total stored data on earth.
While clearly not all of this data is open, available, and suitable for deep learning models,
this trend in total data storage is also characteristic with data suitable for deep learning
models.

A key example which was pivotal in the success of the field is the aforementioned ImageNet
database which contains nearly 15 million images where early deep learning models were
trained with 1.5 million annotated images out of the total. Another example is with large
scale text models trained on all of Wikipedia which as of early 2024 includes over 59 million

8As there is not one credible openly available data source, we crowd sourced estimates via search results
for a few years that had estimates searchable via Google. With this, we obtained estimates for the years,
2006, 2007, 2010, 2012, 2018, 2021, and 2022, some of which were for the total data stored and some for
the data generated during that year. We then fit an exponential model to the data under a few minor
additional assumptions. Details of our extrapolation are in the source code notebook available through
https://deeplearningmath.org/.

15

https://deeplearningmath.org/


i
i

i
i

i
i

i
i

1 Introduction - DRAFT

Figure 1.5: Predictions of the world’s total data storage during the third decade of the 21st
century. The graph is in yotabytes where each yotabyte is 280 bytes or approximately 1024 bytes.
Note that at the time of publishing of this book, estimates still use the zetabyte unit (a zetabyte is
270 bytes, or 1/1024 of a yotabyte). Current estimates at the time of publishing of the book are
at around 150 zetabytes. The predictions in this plot are speculative and are based on a simple
extrapolation that we carried out.8

pages with a compressed text size of about 22 gigabytes. Up to the turn of the century, such
datasets were much harder to come by, were rarely openly available, and disk sizes of most
computer workstations were often too small to accommodate them. However in recent years
the availability of plenty of rich datasets has been pivotal for the success of deep learning.
More information on annotations and popular datasets is in Section 1.4 below.

The Internet, Software Practices, and Open Source

In addition to fast computation and the availability of large datasets, the recent success of
deep learning was also fueled by new software development practices that evolved around
the proliferation of the internet. Up to the last decade of the 20th century, most software
developments involved relatively isolated groups working in companies, in research groups,
or individually. As such, there was not much sharing of ideas, information, packages, and
modules. However, by the end of the first decade of the current century, global collaborative
community practices solidified and eventually resulted in (generally) free services such as
Stack Overflow, GitHub, GitLab, Kaggle, and many more which today are a natural part of
software development and data science culture. A key attribute of these new services is that
they incentivize individuals (and groups) to share their ideas and source with the global
community. These developments went hand in hand with the growth of the open source
ethos which is shared and respected by many.

By the middle of the second decade of the 21st century, as the strength of deep learning became
evident, new age collaborative global software practices were already quite mature. The
timing of these events greatly helped the deep learning revolution as it allowed thousands of
contributors around the globe to develop software, supporting documentation, and examples
suited for deep learning applications. As a consequence, within a period of a few years,
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1.4 DATA, Data, data!

deep learning software frameworks such as the now popular TensorFlow, PyTorch, Keras,
fast.ai, Flux.jl, and others became available, quickly matured, and are now widely used. By
today, new deep learning ideas stemming from research are often published together with
open source software. As a consequence, machine learning engineers and other users of deep
learning, are able to easily and quickly use of the state of the art models and methods.

All of these practices are key ingredients not just of deep learning, but of data science, and
software development at large. However, in terms of the deep learning revolution, the timing
of events was just right.

1.4 DATA, Data, data!
E�ective training of deep learning models requires large datasets. We now present examples of
various forms of data as well as a few popular datasets that are used for educational purposes,
for training of real models, or for benchmarking. Our focus here is on annotated datasets
typically used for supervised learning, a concept discussed at greater depth in Chapter 2.
These are datasets consisting of feature vectors, each denoted by x, and associated labels,
each denoted by y.

One should keep in mind that single data values are typically either numerical or categorical.
The latter is the case when the values come from small discrete sets. In some cases categorical
data has order such as for example the level of customer satisfaction which may be recorded in
the range unsatisfied, . . ., very satisfied. These are called ordinal categorical variables
and in certain cases they may be directly converted to numerical variables which encode the
order. However, other categorical variables such as banana, car, etc. have no specific order.
These are called nominal categorical variables and they are typically treated by expanding
the values into unit vectors. More on dealing with such data is in Chapter 2.

Here are a few generic examples for the features x and labels y. In some cases there is a
natural dimension to the data, such as (mono) audio being, one dimensional, black and white
images being two dimensional, and color images being three dimensional. When treating
this data mathematically, we often attempt to represent x as a one dimensional vector of
length p, where p is the number of features.

Audio recording: A simple representation of audio is the vector of amplitudes of the
recording at regular intervals. For example at 44, 100 samples per second is a common
sampling rate for high quality audio. The amplitude can be a positive or negative
number.9 Hence for example, an audio recording taking a snapshot of music for 5
seconds will be a vector x with p = 220, 500 entries (features). An associated label y,
in case this is music audio, may be the genre of the music such as jazz, hip-hop, etc.

A monochrome image: Here consider an image of p1 by p2 pixels with each pixel
signifying the intensity e.g., 0 is black and 255 (or some other maximal value) is white.
We can consider the image as a p1 ◊p2 matrix and the vector x of length p = p1 ·p2 as a
vectorized form of the matrix using either a column-major or row-major representation
of the matrix. As an example consider a 200 ◊ 100 (portrait) image. In this case the
vector x has p = 20, 000 features (pixels). A simple example for y may be an indication

9Often such amplitudes are two bytes each, or 16 bits each, and this means that they obtain values from
a finite range of 216 = 65, 536 possibilities.
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of the class of the image, such as banana, car, etc.. Alternatively y may represent a
bounding box inside the image where the object we are looking for is localized.

A color image: Here each pixel is not just an intensity but rather an RGB (Red, Green,
Blue) 3-tuple. One way to represent this image is via a 3-tensor which is 3 ◊ p1 ◊ p2
dimensional. A vectorized image would be a p = 3 · p1 · p2 dimensional vector. Note
that while color images are typically stored in a compressed format such as JPEG,
for deep learning purposes images are typically considered in a bit map format as
described here.

A text corpus: Text encoded in the ASCII format, the Unicode format, or other means
is a sequence of characters. However treated as a datasource for deep learning we
may sometimes break up the text into words (or tokens), associate a unique vector
with each word, and represent the text as a sequence of vectors. Here y may be the
associated text in a di�erent language, or it may be a level of sentiment of the text
which is a number between ≠1 and 1 indicating the text is of a negative tone (angry,
critical, etc...), or is of a positive tone.

Heterogeneous datasets: In many cases the features are heterogeneous in nature as one
would expect for example in the case of individual customer records in a database. For
such a case, each customer can be associated with dozens, hundreds, or thousands of
features, either numerical or categorical. Here y may be a continuous variable indicating
the propensity (probability) of a customer to leave the service.

A Few Popular Datasets Examples

In most cases, datasets are created using a manual annotation process where after the x’s
are collected, standardized, and cleaned, human annotators look at each x and assign the
matching value to y. Needless to say, the process of annotating datasets is generally time
consuming and expensive. The deep learning revolution was sparked by the creation of a few
large annotated datasets and to date, the process of annotating datasets for new purposes is
often a costly barrier for engaging in new deep learning ventures or research.

We now list a few selected notable datasets that are likely to appear in elementary deep
learning practical examples, in research papers, and are sometimes also used professionally.
See also Figure 1.6. Of the examples which we list here, the ImageNet database is the most
industrially applicable dataset since many vision models are trained via this dataset and
can then be ported to other models using transfer learning.

Some datasets break up the data a-priori into some random but fixed partition between
a train set and a test set. This, in principle, allows one to benchmark models by training
them on only the training set and evaluating performance on the test set. Such practices are
discussed in greater detail in Chapter 2.

MNIST11 digit images: One of the most basic machine learning datasets is the MNIST
database. In this dataset, each sample x is a 28 ◊ 28 black and white image of a
handwritten digit, and when vectorized it is a p = 784 long vector. Each label y is

10Image (b) is sourced from the website https://www.cs.toronto.edu/~kriz/cifar.html. Image (c) is
thanks to A. Krizhevsky, I. Sutskever, and G. E. Hinton, sourced from “ImageNet Classification with
Deep Convolutional Neural Networks”, [239]. Image (d) is from https://www.kaggle.com/lakshmi25npathi/
imdb-dataset-of-50k-movie-reviews.

11Modified National Institute of Standards and Technology.
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(a) (b)

(c) (d)

Figure 1.6: Some popular datasets.10 (a) Handwritten digits from the MNIST dataset. Each digit
is 28 ◊ 28 pixels. (b) The CIFAR-10 dataset comprised of 32 ◊ 32 color images from 10 classes. (c)
Some images from the ImageNet dataset together with the top-5 classified labels. The correct label
is in pink. (d) An extract from the IMDB movie reviews dataset. Each review is labeled as either
positive or negative.

an element from 0,1, . . ., 9 indicating the digit. The distribution of digits is balanced,
meaning that there are approximately the same number of images for each digit (class).
The dataset is broken into a train set comprised of 60, 000 images, and a test set with
an additional 10, 000 images.

It is fair to say that this dataset does not have much industrial value, but is rather used
for educational and academic purposes. Training a machine learning model to classify
MNIST images is one of the most basic practice tasks one can consider. Further, many
machine learning papers use MNIST to illustrate ideas and benchmarks.

A similar dataset with the exact same characteristics, is the fashion MNIST dataset
where the images and labels are shirt, shoe, etc... and the dimensions of the data
are set exactly like MNIST. The digit MNIST can be trained for over 99.8% accuracy
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1 Introduction - DRAFT

with state of the art models, yet fashion MNIST is slightly more challenging and can
be trained to achieve around 96.5% accuracy.

CIFAR12 - 10 small color images: Similarly to MNIST, the CIFAR-10 dataset has
small images (32 ◊ 32 pixels in this case) each broken up into 10 classes, namely
airplane, frog, etc... as appearing in Figure 1.6 (b). However, the images are in color
and hence p = 3 ◊ 32 ◊ 32 = 3, 072. Here there are 50, 000 train images and 10, 000
test images and like MNIST this is a balanced dataset between classes. This dataset is
popular with research papers and is occasionally used as a benchmark dataset. State
of the art models achieve around 99% prediction accuracy.

ImageNet: The ImageNet database is undoubtedly the most popular dataset for deep
learning benchmarking, as well as for industrial use in image analysis. It was created
at the end of the first decade of this century and coupled with the associated ImageNet
challenge13. The challenge uses 1, 000 non-overlapping image classes. ImageNet has
nearly 15 million color images with varying resolutions and an average resolution
of around 470 ◊ 385. The images are labelled very specifically to more than 20, 000
categories where some images are also labelled with bounding boxes around objects.

In 2012 the AlexNet deep learning model achieved a top-5 accuracy of nearly 85%,
meaning that in 85% of the tested images the correct label out of the 1, 000 labels is
one of the top-5 predicted probabilities. See also Figure 1.6 (c) where the top 5 label
probabilities are presented for a few example images with the correct label marked in
pink. More on top-5 accuracy and other performance measures is in Chapter 2. By
today, state of the art performance for top-5 accuracy is over 99% and for top-1 (or
absolute accuracy) state of the art is just over 90%.

IMDb14 movie reviews: This textual dataset has 50, 000 movie reviews. It is split into
25, 000 for training and the remainder for testing. For each review an indication of
either positive or negative indicates the sentiment of the review. The typical task
with such a dataset is to predict the sentiment for an unseen review. This dataset
is often used as a practice dataset for introductory tasks within natural language
processing (NLP).

Beyond these datasets there are now thousands of additional quality available open sourced
datasets, some of which are only really useful for practice or experimentation, while others,
like ImageNet have real industrial value. Deep learning frameworks and specialized libraries
often come with example datasets, and Kaggle is considered as the most popular general
source of openly available datasets since it also holds competitions and educational activities
associated with the data.

1.5 Deep Learning as a Mathematical Engineering
Discipline

While computing power and the abundance of data are key to the success of deep learning, the
importance of mathematics cannot be underplayed. We now explain the term mathematical
engineering and justify its use in the book’s title.

12Canadian Institute For Advanced Research.
13More formally known as ILSVRC (ImageNet Large Scale Visual Recognition Challenge).
14IMDb is short for Internet Movie Database. The dataset was made publicly available by the authors

of [275].
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1.5 Deep Learning as a Mathematical Engineering Discipline

Human engineering of systems has relied on mathematics almost since the dawn of time.
The pyramids of Egypt could not have been constructed without some prior geometric
calculations and later down the road, the machines that drove the industrial revolution were
designed with the aid of trigonometry, algebra, calculus, and other mathematical techniques.
For such reasons and others, the term engineering mathematics is often used to describe
the combination of calculus, linear algebra, basic di�erential equations, Fourier analysis,
Laplace transforms, and many other mathematical tools that can interplay to help design
and develop physical engineered systems. So why does this book use the permuted term
mathematical engineering?

Our answer lies in the fact that in the field of deep learning, mathematics is used directly
as an engineered component. When one designs an electrical circuit the flow of electricity
is engineered and hence the field is called electrical engineering. When one designs a
robot arm, the mechanics are directly considered and hence the term used is mechanical
engineering. What about the design of a deep neural network for deep learning? The
specification of deep learning models is a mathematical specification about the flow of data
through a combination of a�ne functions, non-linear functions, and at times other mathe-
matical components. Hence the design of deep learning models is the act of mathematical
engineering.

To further understand the phrase mathematical engineering consider the following display
borrowed from Chapter 5. It represents an action that is at the heart of deep learning:

a[¸≠1] z[¸] := W [¸]a[¸≠1] + b[¸] a[¸] := S[¸](z[¸]).
A�ne

Transformation

f
[¸]

◊[¸]

Activation

The function f [¸]
◊[¸]

represents the mathematical action of a single layer of a deep neural network
on neurons/activations/inputs a[¸≠1] to obtain neurons/activations/outputs a[¸]. It involves
an a�ne transformation to reach an intermediate value z[¸] via a matrix multiplication
by the (weight) matrix W [¸] and an addition of a (bias) vector b[¸]. It then involves the
application of a non-linear (activation) function S[¸]. The trainable parameters of the layer
are W [¸] and b[¸] and their combination is denoted via ◊[¸]. A deep neural network f◊(·) is
then a functional composition of many such layers, say L,

y = f◊(x) = f [L]
◊[L]

(f [L≠1]
◊[L≠1]

(. . . (f [1]
◊[1]

(x)) . . .)),

where x = a[0] and y = a[L]. The parameters of the whole model, ◊ are comprised of the
individual parameters of the layers ◊[1], . . . , ◊[L].

Some aspects of the mathematical engineering of deep learning involve choosing the non-linear
functions S[¸](·) and other aspects involve defining the dimensions of W [¸] and b[¸] as well as
any sparsity structures in these. Importantly, deep learning training is essentially the iterative
solution of an optimization problem where the decision variables are the many components
of ◊. For such a problem, in addition to specifying e�cient optimization algorithms, one
needs to determine the optimization objective which in the language of deep learning is
called the loss function. All these activities and many more comprise the mathematical
engineering of deep learning.
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1 Introduction - DRAFT

The Mathematics Used

While deep learning is “deep”, the application of mathematics in the field is relatively
shallow. The mathematical engineering of deep learning is mostly based on linear algebra,
multivariate calculus, and basic probability. It thus uses mathematics at a level comparable
to the first two years of university studies of an engineering degree or a similar field. In
fact, even within these fields, one mostly requires only elementary operations and there is
not much reliance on theoretical results. For example in terms of linear algebra, matrix
multiplication operations are key, but vector spaces, eigenvalues, and matrix decompositions
are mostly not essential. Similarly in terms of calculus, derivatives and their multi-variable
counterparts are central to the field, but integration, vector fields, manifolds, or properties
of real functions are mostly not used. Finally in terms of probability, one simply needs
to account for basic probabilities and occasionally evaluate expectations or variances for
random variables.

This accessibility of deep learning has motivated pedagogical approaches focusing on a
practical coding perspective as in “Deep Learning for Coders with fast.ai and PyTorch” [190]
as well as many other resources; see also the notes at the end of this chapter. In contrast to
such code-centric approaches, our approach relies on mathematical notation as a means of
communicating ideas. With our approach, even though theoretical mathematical results are
mostly not essential, mathematical notation plays a central role in conveying ideas concisely.
See also Section 1.6. where we introduce basic notation for the remainder of the book as
well as a few supporting mathematical results summarized in the appendices.

Development and Investigation of Deep Learning via Advanced
Mathematics

It is important to note that while the mathematics used in this book is quite simple, many of
the models and techniques that we present have advanced theoretical underpinnings. These
advanced counterparts have often played a role in the development of the current simple
models. One such case which will become evident in Chapter 3 is the logistic regression
model. With this model one can analyze the model as either a simple neural network, or
alternatively position it as a statistical model leveraging on the (slightly more advanced)
theory of maximum likelihood estimation (MLE). Interestingly, historically logistic regression
was first developed using MLE and only later appeared as a basic machine learning model.
Similar trends in the machine learning community are also in association with support
vector machines (SVM), a topic that we do not cover further in this book. The theory
and application of SVMs hinges on beautiful mathematical results from functional analysis
and their popularity has certainly inspired multiple ideas in deep learning. Nevertheless,
deep learning models can be understood without considering SVMs. Other such examples
where more advanced mathematics are lurking behind the scenes is in our consideration of
optimization algorithms in Chapter 4. In this context, while most of todays methods are
simple first-order optimization methods, the path to realize that (at the moment) these
techniques work best has also gone through the study of much more advanced second-order
optimization techniques and their variations.

We also mention that there is ongoing research on the theoretical properties of deep neural
networks. In this domain researchers make use of functional analysis, measure theory,
information theory, stochastic processes, di�erential geometry, topology, category theory,
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1.6 Notation and Mathematical Background

and other mathematical fields to describe and understand theoretical properties of deep
learning. While such research e�orts are very exciting, they are not the topic of this book.

1.6 Notation and Mathematical Background
It is assumed that the reader has an understanding of basic mathematical notation and
operations including sets, function notation, basic probability, and basic matrix algebra.
Appendix A reviews key results from multi-variable calculus that are used, but other basics
are assumed known. We now highlight a few notational elements that we use throughout
and you may also consult the notes and references at the end of this chapter for suggestions
of a few resources that may help with a review.

Vectors are in general considered as elements of Rn with n being some positive integer. We
can denote a vector u œ Rn as u = (u1, . . . , un) where the scalar ui is the i-th coordinate of
the vector. Written in this tuple form, we consider the vector as a column vector. That is,
we may consider for example a matrix A œ Rm◊n and then have the matrix-vector product
v = Au with v = (v1, . . . , vm) œ Rm, and each vi given via,

vi =
nÿ

j=1
Ai,juj .

An alternative way to represent a vector is using square brackets in which case we take
its orientation literally. For example w = [w1 · · · wm] is a row vector and its transpose,
w€ is a column vector and an element of Rm. In this case, we may, for example consider
the vector-matrix product x = wA which yields x, an m dimensional row vector. Hence in
summary, with our vector notation for u œ Rn we have,

u =

S

WWWU

u1
u2
...

un

T

XXXV
= [u1 · · · un]€ © (u1, . . . , un).

Some key vectors we consider are 1 œ Rn which is a vector of all 1’s. Similarly 0 can be
taken as a vector of all 0’s. However, the same symbol, 0, is clearly also used for scalars, and
matrices with the actual meaning clear from context. There are also the unit vectors ei with
dimension taken from context and i = 1, . . . , n in case they are n dimensional. Each such
unit vector has 0 entries everywhere except for 1 in the i’th coordinate. So as an example of
this notation, see that the identity matrix I œ Rn◊n can be represented as a sum of outer
products,

I =
nÿ

i=1
eie

€
i

.

The norm Î · Î is often used and unless stated otherwise it is the vector L2 norm. That is,
for u œ Rn, ÎuÎ =

Ô

u€u. Similarly ÎuÎ
2 = u€u.

Surprisingly, beyond matrix vector arithmetic, norms, and a few basic operations, we only
seldom use linear algebra machinery such as eigenvalues, and the singular value decomposition.
This is because most of the book is focused on the basic mathematical engineering of deep
learning which at its core, does not use very sophisticated mathematics but rather employs
basic mathematical concepts to create sophisticated models. We thus leave it to the reader
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1 Introduction - DRAFT

to seek a self-refresher on such topics as they arise. For example, some of our discussion
of unsupervised learning in Chapter 2 builds on understanding of linear algebra. However,
these topics are in general tangental to the core material of the book.

In terms of concepts of optimization theory, Chapter 4 covers these in a self contained
manner that does not require further background beyond a few multivariate calculus results,
reviewed in Appendix A. Hence for example, convexity is briefly introduced and summarized
directly in Chapter 4. At certain points, the reader may want to dig deeper and review
topics individually elsewhere.

Finally, in terms of probabilistic concepts, it is assumed the reader is aware of the informal
definition of probability P(·) and basics of random variables. This also includes the expectation
E[X] of a random variable X, the variance, denoted Var(·), and covariance. Similarly to the
linear algebra concepts, we do not make heavy use of probability theory, however certain
probabilistic computations occasionally arise.

24



i
i

i
i

i
i

i
i

1.6 Notation and Mathematical Background

Notes and References
Since this book is purposefully agnostic both to implementation issues and to the historical account
of deep learning, we use an unnumbered section such as this at the end of every chapter to provide
key notes and references. More additional information is also available via the book’s website.15 The
website also includes links to articles and references, tutorials, videos, and mathematical background.

In terms of implementation, at the time of writing this book, almost any introductory (or advanced)
work in deep learning uses the Python language. See for example [342] for a general intermediate
guide to Python. Neat examples in Python for general machine learning are in [240], and that
resource can also serve as a comprehensive mathematical introduction to the whole field of machine
learning and data science. Another language slowly stepping into the spotlight is Julia, see [303] for a
statistical introduction to the language and [338] to get a taste for scientific machine learning, where
Julia is often used. Further, the R statistical computing system has a vast user base in statistics and
supports tens of thousands of packages as well as multiple interfaces to deep learning frameworks.
See for example [245] for a classical introduction to statistics with R and [10] for ways of using R
with deep learning. Until around 2015, programming in C/C++ for deep learning was the norm.
However, these days it is much more of a speciality and is only required in very specific cases. See
for example [319] for a classical text involving pattern recognition and C/C++. Paid language
platforms such as Mathematica, Maple, and MATLAB are attempting to retain some of their user
base by incorporating deep learning libraries. However to date, these commercial systems have
shown to be much less mature with deep learning in comparison to the open source arena.

Beyond the computer languages in use, a key aspect of deep learning is the usage of deep learning
frameworks. These are software packages for training and execution of the model. In the near past,
the most popular framework was TensorFlow supported with the higher level interface of Keras. See
for example [133]. However more recently PyTorch, see for example [320], has gained much more
popularity and it has higher level interfaces such as fast.ai or PyTorch Lightning. See also Flux.jl in
the Julia arena. In general, [190] provides a comprehensive applied introduction to deep learning
with fast.ai and PyTorch. Further, consider the video lecture series coordinated by Andrew Ng16;
see also [306]. Our book’s website provides more information and suggested resources.

Some quantitive measures of the size of the human brain and other brains is in [175]. As we do not
provide a complete historical account of deep learning and its relationship with neuroscience, we
recommend the article [364] for a taste of recent work on neuroscience inspired by deep learning.
Also see [165] for a comprehensive condensed review of the interface of the fields, both historically
and today. An interesting style of neural network architecture which attempts to resemble the brain
more closely than standard architectures is the spiking neural network; see for example [398]. More
relationships with neuroscience as well as other views of deep learning can be found in other deep
learning texts. A now classical deep learning book is [142], and a slightly more recent comprehensive
textbook is [4]. See also the book [308], as well as a more recent book taking a mathematical
approach [69].

A recognized reference for the Turing test from 1950 is [404]. The first major work on neural network
architectures is the perceptron by Frank Rosenblatt [353] in 1958. A major landmark that helped
spark general attention in deep learning is the AlexNet success in the 2012 ImageNet challenge,
[239]. The literature and work between Rosenbladtt’s early work and the 2012 AlexNet success is
too numerous to list here. It involved an evolution of many ideas and experiments over decades.
A good starting point for the key references is the nature paper [249]. Further key references are
mentioned at the end of the chapters in the sequel.

The creation of the ImageNet database by Fei-Fei Li, her team, and collaborators has had a profound
a�ect on deep learning in the second decade of this century. ImageNet, [102], was created with the
aid of Amazon’s Mechanical Turk service and with the WordNet, [289], hierarchical word database.
The VGG19 model (see [380] as well as the VGG16 model) mentioned in this chapter is one of
several models that at the time of creation had near-top performance in the ImageNet challenge,
associated with the ImageNet database. There are many additional models that are both more
e�cient and outperform VGG19 and VGG16. The frontier keeps improving. See for example the
empirical analysis [70] to get a feel for the performance metrics at play. Chapter 6 provides more
references to landmark convolutional architectures.

15See https://deeplearningmath.org/.
16See https://www.deeplearning.ai/.
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1 Introduction - DRAFT

Di�usion models, gained significant prominence following [183]. The generative adversarial network
idea and the association to game theory first appeared in Ian Goodfellow’s co-authored work in
2015, [143]. For a key reference dealing with AlphaGo see [377] from 2016. An article describing the
earlier (1999) deep blue chess playing system is [164]. Modern approaches to deep reinforcement
learning are surveyed extensively in the texts [125] and [393]. The more recent GPT-3 model is
described in [66]. General texts about graph neural networks are [157] and [273]. The subsequent
chapters contain more detailed references for each of these subject areas.

Our exposition has completely ignored the many ethical aspects associated with machine learning,
deep learning, and artificial intelligence. This includes issues of disinformation, bias and fairness (also
in datasets), privacy and surveillance, algorithmic colonialism, and the many negative applications
that one can cook up with deep learning and generative models. Ethical considerations are critical
for anyone embarking on an applied deep learning project. As this is not the topic of this book, we
suggest the resources and content from the fast.ai website17 as a starting point on ethics in deep
learning.

Since the rest of the chapters of this book are more mathematical than this chapter, some readers
may wish to strengthen or revive their mathematical background. In the context of linear algebra for
data science the introductory book [56] is recommended. Further [391] provides more context with
a rich variety of linear algebra topics and their interface with data science. A general mathematical
review for machine learning is in [101]. Finally, in addition to exploring the appendices of the current
book we also recommend the appendices of [240]. See also further resources in our book’s website.

The research world of deep learning is expanding very quickly with multiple important directions
that are beyond the scope of the book. One direction is Bayesian neural networks, see for example
[213]. Another component is causal modeling; see for example [325]. Further, in the field of quantum
computing there is already research on quantum deep learning; see for example [130]. The applied
world of deep learning is currently in a massive growth phase with large language models being one
of the most exciting directions. A comprehensive survey relevant for the time of publishing of this
book is [449].

17See https://ethics.fast.ai/.
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