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2 Principles of Machine Learning -
DRAFT

At its core, deep learning is a class of machine learning models and methods. Hence, to
understand deep learning, one must have at least a basic understanding of machine learning
principles. There are dozens of general machine learning methods and models that one can
cover and our purpose here is certainly not to present a detailed account of all of these
methods. Instead, we take a path that presents a general overview of machine learning, and
then focuses mostly on linear models which are the most elementary neural networks out
there. In the process we explore gradient based learning for the first time, a topic that plays
a key role in the chapters that follow.

In Section 2.1 we present an overview of the key activities of machine learning including
supervised learning, unsupervised learning, and variants of these. In Section 2.2 we explore
key elements of supervised learning. In Section 2.3 we introduce linear models. These form
the basis for many other models as well as for the deep learning networks of this book.
We then explore the basic gradient descent algorithm in Section 2.4. Linear models can
often be trained without gradient descent, yet exploring gradient descent in the context
of linear models is a useful warmup for the chapters that follow. In Section 2.5 we discuss
generalization ability, overfitting, and introduce techniques of regularization. We further
discuss the training process including splitting of the data and cross validation methods.
Most of this book deals with supervised learning methods, however understanding basic
techniques from unsupervised learning is also important. Hence, in Section 2.6, we take
a brief look at unsupervised methods including K-means clustering, principal component
analysis (PCA), and also touch the singular value decomposition (SVD).

2.1 Key Activities of Machine Learning
The world of machine learning intersects heavily with both the worlds of statistics and
computer science. In statistics data and randomness are key. In contrast, in computer science,
algorithms and computation are the focus. Machine learning borrows from both worlds
and is about the combination of data and algorithms. It is all about training mathematical
models on a computer in order to classify data, predict outcomes, estimate relationships,
summarize data, control complex processes, and more.

We now present and characterize a few key activities of machine learning. These activities
are carried out when training, calibrating, adjusting, or designing machine learning models
and algorithms. Many of these activities are loosely called learning while other activities
involve prediction or decision making.

Any activity of machine learning can be described as an interaction between the following
entities: data, models, algorithms, and the real world. By data we mean both collected data
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2 Principles of Machine Learning - DRAFT
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Figure 2.1: Supervised learning. Activities include training a model and prediction in production.

such as the (x, y), features-label, pairs described in the previous chapter, or data that is
generated as output of models or algorithms. By models we mean mathematical objects
stored and implemented on a computer, together with the parameters that specify these
objects. By algorithms we mean the procedures for creating models, procedures for creating
output datasets, as well as procedures for using the models themselves for prediction or
related tasks. Finally, by the real world we refer to scenarios that support generation of data,
annotation of data, as well as usage of output data for decision making, and control.

Machine learning activities are often dichotomized into two broad categories, supervised
learning, and unsupervised learning. With supervised learning, data is assumed to be available
as (x, y) pairs where each feature vector x is labeled via y. In the case of unsupervised
learning, one only observes data points x and tries to find relationships between the various
elements, variables, or coordinates of x. To understand this terminology consider the learning
of babies or toddlers, which only involves the exploration of input sensory data without
any indication of what is what. This is unsupervised learning since toddlers are typically
not told explicitly “this does this” and “that does that”. Then later on, for example during
school, they engage in supervised learning since language and text are used to present the
learners with examples x and their outcomes y.

A key activity in supervised learning is the usage of data to learn/train models for prediction.
See Figure 2.1. This prediction is called classification in case the labels y are from a finite
discrete set and it is called regression in case the labels y are continuous variables. There are
also other cases of prediction where the labels y are vectors, images, or similar. A related
activity is obviously to use the trained models for prediction when presented with unlabelled
data from the real world; this is illustrated on the right of Figure 2.1. Both the training of
models and usage of models for prediction involves the execution of algorithms. Sometimes
the trained model is called an “algorithm” as well since it may be integrated in part of
bigger systems that use it. Most of this book focuses on supervised learning and we begin in
the next section, Section 2.2, by overviewing key concepts of supervised learning.
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2.1 Key Activities of Machine Learning

With unsupervised learning there are other activities beyond prediction, regression, and
classification. See Figure 2.2. One important activity is clustering, which focuses on finding
groups of similar data samples. The output of algorithms that perform clustering are typically
not considered as models but are rather modified datasets that incorporate the clustering
information. Another key unsupervised learning activity is to carry out data reduction where
high dimensional vectors are transformed into lower dimensional vectors that still encode
some of the key relationships between variables. While unsupervised learning is not the focus
of this book, several unsupervised learning algorithms are overviewed in Section 2.6.
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Figure 2.2: Some activities of unsupervised learning: Clustering (top) partitions the data. Dimension
reduction (bottom) reduces the size of the features.

Beyond the dichotomy of machine learning into supervised and unsupervised, there are also
additional popular activities that are not directly categorized as such. One popular class of
activities is reinforcement learning introduced in Chapter 8. Here a temporal component
is key and an agent is trained to carry out tasks in a dynamic environment. An additional
class of activities is generative modelling also introduced in Chapter 8 in the context of
variational autoencoders, di�usion models, and generative adversarial networks. Here models
are trained to create artificial datasets with characteristics (or a distribution) similar to
the input dataset. An additional suite of activities is transfer learning. Transfer learning
is all about taking models that have been trained for one domain and adapting them to
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2 Principles of Machine Learning - DRAFT

other domains with new data. Related is active learning where the learning process is not
static but is rather informed by the performance of the model on unseen data. This is very
closely related to semi-supervised learning where like supervised learning, there are both
feature vectors x and labels y, yet only a subset of the feature vectors have accompanying
labels. The learning process tries to use all of the available data. Finally, self-supervised
learning, briefly discussed in the context of deep learning natural language processing in
Chapter 7, creates models where sequences of data are used to self-predict the future or
missing elements of the sequences. This is useful for language models and related tasks.

Data: Seen, Unseen, Training, and Test

Data is a central part of machine learning. In considering data it is important to distinguish
between seen data and unseen data. Seen data is the data available for learning, namely for
training of models, model selection, parameter tuning, and testing of models. Unseen data
is essentially unlimited since it is all data from the real world that is not available while
learning takes place but is later available when the model is used. This can be data from the
future, or data that was not collected or labelled with the seen data.

Needless to say, for machine learning to work well, the nature of the seen data should be
similar to that of the unseen data. The underlying assumption of machine learning is that
the seen data used to create models is generated by underlying processes of the real world
that are similar to the processes generating unseen data. Practically, one needs to carry out
data collection and labelling so that this resemblance between the seen and unseen data is
maintained.

A common practice in the world of machine learning is to split the seen data into training
data and testing data. These are sometimes called the training set and test set; an additional
name for the test set is the hold out set. The key idea with such a split is to use the training
data for learning and to use the testing data for mimicking a scenario of unseen data. As
described in Section 1.4 some popular example datasets come with such a predefined split.
In other cases, it is up to the machine learning engineer to split the data randomly according
to some predetermined proportions. Examples follow in this chapter.

Since the purpose of the train-test data split is to mimic the unseen data with the test set, one
should not recalibrate, adjust, or tune models on the training set while testing repeatedly on
the test set. Carrying out such a repetitive use of the test set would invalidate its resemblance
of unseen data. For this reason one sometimes performs an additional split of the training
data by removing a chunk out of the training data and calling it the validation set. More on
this practice and other alternatives such as K-fold cross validation is in Section 2.5.

The practice of splitting data into the train set and test set is very popular in machine
learning so long as a large number of samples is available. However, in some cases there is
not enough data to be able to separate a test set and thus one wishes to use all available
data for model fitting. This is sometimes the case when working with experimental data and
biomedical data. In such cases, statistical inference approaches for evaluating the quality of
the model fit make heavier use of the model at hand. Some approaches for comparing models
are likelihood based and include performance measures such as the Akaike information
criterion (AIC) or Bayesian information criterion (BIC). The world of model fitting in a
statistical content is vast and we do not focus on such methods further in this book.
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2.1 Key Activities of Machine Learning

Data Preprocessing

Raw data often requires preprocessing before it can be used for training, prediction, or as
input to other machine learning models. Although a full description of data processing steps
and practical aspects of data processing is beyond our scope, one important activity that we
cover is standardization of the data, also sometimes called normalization of the data. This
involves subtraction of the mean of each feature and division by the standard deviation of
the feature.

Assume the values for some feature i are x(1)
i

, . . . , x(n)
i

where n is the number of data samples.
The sample mean and sample variance1 of the feature are respectively computed as,

xi = 1
n

nÿ

j=1
x(j)

i
, s2

i
= 1

n

nÿ

j=1
(x(j)

i
≠ xi)2. (2.1)

Further, the sample standard deviation is the square root of the sample variance and is
denoted via si. With these basic descriptive statistics of the feature available we may
standardize the data samples of each feature i = 1, . . . , p to obtain standardized samples,

z(j)
i

= x(j)
i

≠ xi

si

for j = 1, . . . , n. (2.2)

Now the standardized data for feature i, z(1)
i

, . . . , z(n)
i

, has a sample mean of exactly 0 and
a sample standard deviation of exactly 1. In the case the data samples of the feature are
distributed according to a normal distribution,2 then most standardized samples would lie
in the range [≠3, 3]. Even if the data is not normally distributed, the standardized samples
will still lie in the vicinity of this range and are centered about 0.

Such standardization is useful as it places the dynamic range of the model inputs on a
uniform scale and thus improves the numerical stability of algorithms. It also allows us to
use similar models for di�erent datasets that may, without standardization, have completely
di�erent dynamic ranges. In Section 2.4 we discuss how such standardization can also help
optimization performance.

Learning ¥ Optimization

Almost any form of a learning or model training activity involves optimization either explicitly
or implicitly. This is because learning is the process of seeking model parameters that are
“best” for some given task. In fact, all of Chapter 4 is devoted to optimization techniques in
the context of machine learning and deep learning, and a few of the sections of this current
chapter contain aspects of optimization as well.

In some cases optimization is carried out directly on some performance measure that
quantifies how good the model at hand performs. This is, for example, the case when one
considers the mean square error criterion for regression problems, a concept which we study
in detail in this chapter. However in other cases, a loss function is engineered for the problem
at hand in a way that minimization of the loss function is a proxy for minimization of

1In a statistical context one often uses n ≠ 1 in the denominator of the sample variance instead of n. For
non-small n this distinction is insignificant.

2A few attributes of the normal distribution, also known as the Gaussian distribution, are in Appendix B.
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2 Principles of Machine Learning - DRAFT

the actual performance measures that are of interest. This is, for example, the case when
considering classification problems and aiming to get the most accurate classifier. In such a
case, optimization is typically not carried out directly on the accuracy measure but rather
on a loss function such as the mean square error, or cross entropy defined in Chapter 3. In
any case, the design of loss functions as part of the learning procedure is central to machine
learning and deep learning and appears throughout this book.

Note that in some cases, machine learning algorithms such as decision trees do not directly
specify an optimization procedure but rather execute a predefined algorithm for fitting
a model. However, even in such cases, there is typically an inherent hidden optimization
problem associated with the procedure. Hence in general we can think of “learning” as the
process of carrying out some sort of “optimization”.

2.2 Supervised Learning
We now focus on supervised learning and outline key concepts, practices, and terminology.
Supervised learning is about predicting an outcome ŷ for y, where the prediction is based
on a vector of input features x. When y is from a finite discrete set then the task is called
classification and when y is a continuous variable then the task is called regression.

We begin with overviewing basic regression in the context of linear models and feature
engineering. We then discuss aspects of binary classification which is the case when y only
attains one of two possibilities. The more general multi-class classification case in which y
takes on multiple possibilities is presented as part of specific examples in Section 2.3. We
close this section with a high level overview of several methods and general approaches to
supervised learning.

Regression and Feature Engineering

We begin by considering a very simple univariate example where the scalar (p = 1) feature
x is the average number of rooms per dwelling and y is the median value of owner-occupied
homes in thousands of dollars. These variables, respectively denoted rm and medv, represent
data from the well-known Boston housing dataset.3 A regression model y = f◊(x) attempts
to predict the median house price as a function of the average number of rooms.

To illustrate this concept, consider the well-known simple linear regression model where
f◊(x) = —0 + —1x and the parameter vector is ◊ = (—0, —1). Notice that in this case the
dimension of the parameter vector is d = 2. This model can also be described statistically
via,

y = —0 + —1x + ‘, (2.3)

where ‘ represents the error or noise term as it models the gap between y and f◊(x). In
statistical theory and practice, assumptions about the probability distribution of ‘ go a
long way as they support inference outputs such as confidence bands, hypothesis tests, and
more. However in practical machine learning culture, one often ignores ‘ and such statistical
assumptions.

3This dataset originally published in [161], has 506 observation where each observation is associated
with a suburb or town in the Boston Massachusetts area. Of these observations 16 are capped at rm = 50
and we remove these to stay with n = 490 observation.
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2.2 Supervised Learning

Provided feature data x(1), x(2), . . . , x(n) (rm – average number of rooms per house in a
geographical area), and corresponding label data y(1), y(2), . . . , y(n) (medv – median house
prices in a geographical area), the training process involves finding a suitable or best
◊̂ = (—̂0, —̂1). In Section 2.3 we study the process for finding ◊̂ via minimization of a loss
function, yet at this point let us just consider the model parameters, also known as parameter
estimates ◊̂, as an outcome of training.
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Figure 2.3: Examples of elementary linear models. (a) Median house prices per locality (medv) as
a function of average number of rooms per dwelling (rm) is described via a simple linear (a�ne)
relationship. (b) House prices as a function of lower status of the population in % (lstat) is not
described well with a linear relationship (red), but by introducing an additional quadratic engineered
feature it is described well via a three parameter linear model resulting in a quadratic fit (blue).

Figure 2.3 (a) presents a scatter of the (x(i), y(i)) pairs. The parameters estimated for this
model are —̂0 = ≠30.01 and —̂1 = 8.27. The figure also includes a plot of the fit or estimated
model f

◊̂
(·) as a red line. Clearly, with such a model, any unseen (new) observation xı can be

used to make a prediction ŷ = f
◊̂
(xı). If one is willing to make statistical assumptions about

the error ‘ and probabilities of error then an extra benefit of the model is the confidence
bands, presented as a the gray shaded area around the red line. Most of the modelling
described in this book uses very complex models that do not take such a statistical approach
and hence built-in inference outputs such as these confidence bands are often not available.

We also mention that the estimated parameters in such a model have an interpretation.
For example —̂1 = 8.27 indicates that increasing the average number of rooms by one room
implies an average rise in median price of $8.27K. Many types of statistical models have the
benefit of interpretable parameters, yet in the world of machine learning where models are
often very complex, parameter interpretation is an exception rather than the rule.

As a follow up example arising from the same dataset, consider the relationship between
the variable x taken as the percentage of the population that is of a low social economic
status (lstat) and the variable y taken again as medv. A simple linear model fit to this will
yield parameter estimates ◊̂ since in almost any case one can fit any model to data. However
the model may not always be suitable for the data or process at hand. For example, in
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2 Principles of Machine Learning - DRAFT

Figure 2.3 (b), a scatter plot of the data is presented and it is apparent that the downward
sloping linear model fit in red does not do a good job in describing the relationship between x
and y. Observe also that confidence bands for this simple linear model may look deceptively
appealing (tight gray bands around the red line) especially if one was only to look at these
and not the actual scatter plot of the data. The pitfall is that these confidence bands are
computed under the assumption that the model fits the underlying process and data well, a
case that does not hold here. Such a phenomena is often loosely called model misspecification
and is one of the risks that one undertakes (and needs to mitigate) when using statistical
inference techniques.

An alternative to the simple linear model is to seek a richer relationship such as,

y = —0 + —1x + —2x2 + ‘. (2.4)

One way of describing this relationship is via the function f◊(·) defined for the d = 3
dimensional ◊ via, f◊(x) = —0 + —1x + —2x2 where x is still a scalar (p = 1). An alternative
description of the same model is to consider the squaring of the lstat variable as a new
engineered feature and thus now consider x as a p = 2 dimensional vector with x1 being the
original feature and x2 = x2

1 the new engineered feature. In this case the model function
is linear (a�ne) f◊(x1, x2) = —0 + —1x1 + —2x2, and the fact that x2 is the square of x1 is
considered a feature engineering aspect and not a model function aspect. In practice, in this
case, both approaches are identical and yield the same ◊. Figure 2.3 (b) presents the fit and
corresponding error bands of this quadratic model in blue.

We mention that linear models for regression, which are the workhorse of classical statistics,
can be extended in many ways. The notes at the end of this chapter point at some extensions
such as Generalized Linear Models (GLM), mixed models, and more. Note also that non-
linear relationships in a regression context could be explored using smoothing techniques.
Popular techniques in this framework are the Generalized Additive Model (GAM), the Locally
Estimated Scatterplot Smoothing (LOESS) method, as well as Nadaraya-Watson kernel
regression. We also mention that generally when one considers feature engineering, one very
important aspect is dealing with interaction terms. This means creating new engineered
features that are based on the products of other features.

The world of machine learning has adopted these models often removing statistical assump-
tions (e.g. about the noise ‘) while introducing additional non-linearities and mechanisms
that yield very expressive models. The deep neural networks that we cover in this book
include one such rich class of examples. We also mention that while the numerical house
price context that we presented here appears to be simple and low dimensional, regression
problems can often involve extremely high dimensional input feature vectors. For example,
any regression problem where the input data is an image is of this nature. A concrete
example of such a case is using images of a human face to predict the age of the person.

Binary Classification

Moving on from regression problems where y is continuous, we now consider binary classifi-
cation where y attains one of two values, which are sometimes referred to as positive or
negative. There are dozens of machine learning methods for binary classification and our
purpose here is not to explore how these methods work. Instead we wish to illustrate how
their performance is quantified.
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2.2 Supervised Learning

Our exposition relies on a logistic regression based classifier where positive samples are
encoded via y = 1 and negative samples are encoded via y = 0. Note that, in other scenarios
positive and negative samples are sometimes encoded via y = +1 and y = ≠1, respectively.
Logistic regression is explored in depth in sections 3.1 and 3.2 of Chapter 3. For now, we
can treat such a classifier as being based on a function f◊(x) where x is the feature vector.
The output of f◊(x) is a number in the continuous range [0, 1] indicating the probability
that x matches a positive label. Hence, the higher the value of f◊(x), the more likely it is
that the label associated with x is y = 1.

With the model f◊(·) at hand, a classifier can be constructed via a decision rule based on a
threshold · , with the predicted output being,

‚Y =
I

0 (negative), if ŷ Æ ·,

1 (positive), if ŷ > ·,
where ŷ = f◊(x). (2.5)

In many cases one selects the threshold at · = 0.5. However as we see below, · can often be
adjusted. Also note the notational di�erence between ‚Y and ŷ. Throughout the book, we
use the former to signify the actual predicted label for classification problems whereas we
use the latter to denote the output of the model which is usually (continuous) numerical in
nature.

As an example we consider breast cancer prediction where the label, or outcome variable y
has y = 1 in case of malignant lumps and y = 0 in case of benign lumps. A popular dataset
in this context is called the Wisconsin Breast Cancer Dataset and is based on clinical data
released in the early 1990s.4 We make further use of this dataset in Section 3.1 where we
dive into logistic regression. The feature vector x is of dimension p = 30 and is composed of
continuous variables such as radius_mean, texture_mean, etc., each potentially a�ecting
the probability of malignancy. The data has n = 569 observations and here we use the
80-20 splitting strategy where we split it randomly between training data and testing data
to have ntrain = 456 ¥ 0.8 ◊ n training observations and ntest = 113 ¥ 0.2 ◊ n testing
observations. Note that in some of the sections below, we simply use n to denote ntrain,
when not considering the test set explicitly .

We may train di�erent forms of logistic regression for this data where we take x to be some
subset or transformation of the original feature vector. At one extreme we can take x to
be a single variable, and at another extreme x can be the full feature vector or even have
additional engineered features similar to the home pricing example above.

Here for simplicity we consider two logistic regression models. For the first model we use
only a single feature in x which is smoothness_worst where the actual physical meaning
of this variable is not critical for our understanding at this point. This model is denoted
f◊; p=1(·). In the second model we consider all 30 features in the dataset. This model is
denoted f◊; p=30(·). For each of these models we use the ntrain observations to obtain an
estimated parameter vector where in the case of p = 1, the estimated parameters ◊̂ is of
dimension d = 2 and in the case of p = 30 the estimated parameters ◊̂ are of dimension
d = 31. Details on the actual meaning of the models and parameters of logistic regression are
in Chapter 3. With these models at hand, at first let’s fix · and consider several performance
measures of the classifiers defined via (2.5).

4See https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(Diagnostic) for more
information and relevant references.
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2 Principles of Machine Learning - DRAFT

The standard way to compute binary a classification performance measure is to evaluate the
classifier on the test set. This then allows us to consider the predictions ‚Y(i) and compare
them to the test set labels y(i), for i = 1, . . . , ntest. Observations where ‚Y(i) = y(i) are
counted as either True Positive (TP) or true negative (TN), depending on the value of y(i)

being 1 or 0 respectively. Similarly, observations where ‚Y(i)
”= y(i) are counted as either

False Positive (FP) or False Negative (FN). These four counts, TP, TN, FP, and FN total
up to ntest and are customarily summarized in the 2 by 2 confusion matrix:

Decision
Decide 0 Decide 1

R
ea

lit
y Label 0 True Negative (TN) False Positive (FP) Specificity

TN
TN+FP

Label 1 False Negative (FN) True Positive (TP) Sensitivity/Recall
TP

TP+FN
Negative

Predictive Value
(NPV)

TN
TN+FN

Precision/Positive
Predictive Value

(PPV)
TP

TP+FP

Observe the ratios at the margins of the matrix that present various performance indicators,
namely sensitivity (also known as recall), specificity, precision (also known as positive
predictive value), and negative predictive value. In general, we would like all of these ratios
to be as close to 1 as possible, however as we describe below, there are often tradeo�s.

An additional natural performance measure is the accuracy. It is simply defined as the
proportion of correctly classified samples, namely,

Accuracy = TP + TN
ntest

. (2.6)

This is often the first performance measure one considers5, yet for unbalanced data it can
be an extremely misleading measure. Indeed, a degenerate classifier that always predicts the
most abundant class will have an accuracy equal to the proportion of that class. For example
in binary classification if the positive class constitutes only 5% of the samples, then the
degenerate classifier which always predicts ‚Y = 0 will have an accuracy of 95%. Then, even
when considering a non-degenerate classifier, one observes an accuracy that is typically not
worse than 95% and if for example the accuracy is 99% it is still not an indication that the
classifier works well.

A more robust analysis of performance considers the competing objectives of sensitivity and
specificity, where a high sensitivity (or recall) value indicates a good ability of the classifier
to detect positive samples and a high specificity value indicates a good ability to detect
negative samples. In the case of a threshold based classifier as in (2.5), varying · alters the
confusion matrix and thus the sensitivity and specificity values are modified as well.

A parametric curve based on · known as the Receiver Operating Characteristic (ROC) curve
is often used to visualize this tradeo� between sensitivity and specificity where the x-axis

5Note that the formula here is for binary classification, yet this performance measure is also used for
multi-class classification where the numerator TP+TN needs to be replaced by the total number of correctly
classified samples.
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2.2 Supervised Learning

plots one minus the specificity also known as the false positive rate. Observe from (2.5) and
the formulas at the bottom margin of the confusion matrix, that as · æ 0 the number
of false negatives vanishes and hence the sensitivity approaches 1. Similarly as · æ 1 the
number of false positives vanishes and hence the specificity approaches 1. More generally, as
we vary · between 0 and 1 a tradeo� emerges as captured in the ROC curve. This allows us
to tune the threshold · for balancing sensitivity and specificity, depending on the problem
at hand. Figure 2.4 presents (smoothed) ROC curves for the breast cancer example where
we compare the ROC curves for the f◊; p=1(·) and f◊; p=30(·) models, as well as a “coin flip”
model (chance line) and the “ideal” model.
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Figure 2.4: Receiver operating characteristic (ROC) curves for the breast cancer data. One model
is a univariate model, and the other is a full model. A chance line (guessing model) and a perfectly
separable line (ideal model) are also plotted. For each model, the ROC captures the tradeo� between
the sensitivity and the false positive rate (one minus specificity).

Receiver operating characteristic curves allow us to asses the quality of models taking all
possible threshold parameters into account. A related measure that tries to quantify the
quality of a curve into a single number is the area under the curve (AUC) measure. For a
classifier with an ROC curves that achieves perfect sensitivity under any level of specificity
this measure is at 1 and corresponds to the perfectly separable green curve in Figure 2.4.
However for classifiers that just choose a random class, this measure is at 0.5 corresponding
to the chance line red line in Figure 2.4. In the case of the breast cancer data we see that
on the test set the AUC for the f◊; p=1(·) model is 0.70 and for the f◊; p=30(·) model it is
at 0.92. This may give an indication that the additional features in the richer model help
obtain a better predictor.

Let us now fix the threshold at · = 0.5 and compare a few more performance measures. The
test accuracy in this case is 0.73 for the f◊; p=1(·) model and 0.89 for the f◊; p=30(·) model.
However, since the number of positive samples in the test set is 40 (out of ntest = 113),
we see that this dataset is somewhat unbalanced and hence accuracy is not a good measure
of performance. In such cases, machine learning practice typically focuses on both precision
and recall (sensitivity). Note that this could have alternatively been a focus on specificity
and sensitivity (recall), but in machine learning the precision–recall pair is more popular.
Precision, similarly to specificity approaches 1 as the number of false positives FP approaches
0. However precision is based on the true positives number (TP), while specificity is based
on the true negatives (TN) value.
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2 Principles of Machine Learning - DRAFT

For the f◊; p=1(·) model with · = 0.5 we have,

Precision = TP
TP + FP = 0.70, and Recall = TP

TP + FN = 0.4,

and for the f◊; p=30(·) model with · = 0.5 we have Precision = 0.82 and Recall = 0.9.

A popular way to consider both precision and recall is by averaging them using the harmonic
mean of the two values. This is called the F1 score and is computed as follows:

F1 = 2
1

Precision + 1
Recall

= 2Precision ◊ Recall
Precision + Recall . (2.7)

In our example for the f◊; p=1(·) model with · = 0.5 we have, F1 = 50.8% and for the
f◊; p=30(·) model with · = 0.5 we have F1 = 85.7%. Note that one may also use F1 scores to
calibrate the threshold · . Sometimes one uses a generalization of F1 called the F— where
— determines how much more important recall is in comparison to precision. However, in
general, if there is not a clear reason to price false positives and false negatives di�erently,
then using the F1 score as a single measure of performance is sensible.

In general, cases of unbalanced data should be treated with caution not just in terms of
performance measures and threshold calibration, but also in terms of inference. There are
multiple techniques for handling unbalanced data, some of which include over-sampling or
under-sampling to balance the data. One of the more popular techniques is called synthetic
minority oversampling technique (SMOTE). See the notes and references for further details.

Approaches and Algorithms for Supervised Learning

We cannot cover all aspects of supervised learning in a single section, a single chapter, or
even in a single book. Yet now, after getting a taste of supervised learning in the context of
regression and classification, let us discuss a few general approaches for supervised learning.
Towards that end we first distinguish between discriminative models and generative models.
Most of the models in this book are discriminative. This means that when viewed through
a probabilistic lens (even though we mostly do not do that), they are based on learning
aspects of the distribution P(y | x), i.e. the conditional distribution of the label y given
the feature vector x. This is the case for linear models, logistic regression, general neural
networks, and multiple additional models and algorithms that are not covered in this book.

In contrast, generative models involve learning the joint distribution P(x, y). As a byproduct
knowledge of P(x, y) also means knowing the marginal distributions P(x) and P(y) as well as
the conditional distributions P(y | x) and P(x | y). Hence generative models consider all of
the data relationships as being learned, not just P(y | x). In this book, the most prominent
appearance of generative models is in the context of variational autoencoders, di�usion
models, and generative adversarial networks, appearing in Chapter 8. Another elementary
generative type of model that we do not cover is the famous naive Bayes classifier, most
notably known for early success of e-mail spam detection applications. One more common
type of generative model is linear discriminant analysis (LDA) used in many experimental
statistical contexts.
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2.3 Linear Models at Our Core

Naive Bayes classifiers are based on certain independence assumptions for P(x, y). We
assume that given the label y, all features x1, . . . , xp, are mutually independent. This (naive)
independence assumption then allows us to represent the likelihood function6 of the sample
easily and in turn this enables e�cient generative learning. LDA-based classifiers are also
generative models (even though the name “discriminant” might be misleading). These
classifiers fit a multivariate normal model to the data to carry out classification based on
linear boundaries. Further details of both of these classifier models and algorithms are
beyond our scope.

In terms of discriminative models, the linear models, logistic regression models, and more
general deep learning models in this book are very common examples. Linear models and
logistic regression models are simple deep neural networks. Linear models are studied in detail
in this chapter. Logistic regression models and generalizations are the focus of Chapter 3,
general fully connected deep learning models are the focus of Chapter 5, and other specialized
deep learning models are in chapters 6 and 7. Beyond these deep learning models, other types
of popular machine learning models that we do not cover in the book include support vector
machines (SVM), decision trees, and their generalizations, which include random forests
as well as gradient boosted trees. There are also additional elementary models often used
for instruction of machine learning such as the class of K-nearest neighbours classification
models. Indeed, the world of machine learning is vast with ideas and algorithms for creating
both discriminative and generative models. The notes and references at the end of this
chapter point at key resources.

2.3 Linear Models at Our Core
In this section, we focus on linear models which are the basis for many other models including
deep neural networks. This is the first model in the book where we explicitly use a loss
function for learning. The basic principles of the linear model and the associated loss function
alternatives extend to more advanced models covered in the sequel. Similarly, other concepts
that we cover here in the context of the linear model, such as the treatment of categorical
variables and aspects of multi-class classification, are also relevant for more advanced models.

For the linear model, let us consider a feature vector x = (x1, . . . , xp) œ Rp and the
output/response variable y œ R. The linear model links the output y to the features x
through

y = b + w€x + ‘ (2.8)

where the scalar parameter b is called the intercept or bias, the vector parameter w is called
the regression parameter or weight vector, and the ‘ term represents the noise or error. This
is a generalization of the simple linear regression model (2.3) allowing x to be a vector and
we now denote —0 via b. To facilitate the presentation of key concepts of linear models we
often use a more compact representation of the model,

y =
#

b w1 . . . wp

$

S

WWWU

1
x1
...

xp

T

XXXV
+ ‘ = ◊€x̃ + ‘, (2.9)

6The likelihood function is a basic statistical concept that we survey in Chapter 3 in the context of
logistic regression.
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2 Principles of Machine Learning - DRAFT

where ◊ = (b, w1, . . . , wp) encapsulates both b and w and the feature vector x is extended to
x̃ via a constant unit in its first position. The dimension of ◊ is the number of parameters
and in this case it is d = p + 1.

In order to use the linear model for prediction of unseen data we have to learn the model.
This means to find appropriate values for the parameters in ◊ based on training data such
that the model performs well in prediction. Such a suitable learned parameter is further
denoted via ◊̂ and with such an estimate at hand, a prediction for a new data point xı

œ Rp

is given by,
ŷ(xı) = b̂ + ŵ1xı

1 + . . . + ŵpxı

p
= ◊̂€x̃ı.

Learning the Linear Model

Consider a training dataset D = {(x(1), y(1)), . . . , (x(n), y(n)} composed of a collection of n
samples. For such data it is convenient to define the n ◊ d dimensional design matrix X for
the features, and the corresponding output response vector y, via,

X =

S

U
| | |

1 x(1) . . . x(p)
| | |

T

V with x(i) =

S

WWU

x(1)
i

...
x(n)

i

T

XXV , and y =

S

WU
y(1)

...
y(n)

T

XV . (2.10)

Using this notation we can express the linear model for all the samples of the training set via

y = X◊ + ‘,

with ‘ = (‘1, . . . , ‘n) representing a vector of noise. From this representation given a learned
parameter vector ◊̂, we can further define the predicted output vector of the model for the
input training data via,

ŷ = X ◊̂, where ŷ =

S

WU
ŷ(1)

...
ŷ(n)

T

XV .

A suitable value for ◊̂ will yield ŷ ¥ y. This closeness is captured via a loss function,

C(◊ ; D) = 1
n

nÿ

i=1
Ci(◊), (2.11)

where Ci(◊) := Ci(◊ ; y(i), ŷ(i)) is the loss for the i-th data sample. Specifically ◊̂ is typically
chosen so that the loss function is minimal at the point ◊ = ◊̂.

For the linear model, the most popular loss function is the square loss function also called
quadratic loss where the loss for each data sample is

Ci(◊) = (y(i)
≠ ŷ(i))2. (2.12)

This loss penalizes each element e(i) := y(i)
≠ ŷ(i), also known as the error or residual for

sample i, quadratically. In this case, the loss for the entire training data can be represented
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Figure 2.5: Squared loss visualisation for one input feature p = 1. The sum of the area of the
squares is the loss.

in terms of the L2 norm Î · Î of the corresponding error vector,

C(◊ ; D) = 1
n

nÿ

i=1
(y(i)

≠ ŷ(i))2 = 1
n

Îy ≠ ŷÎ
2 = 1

n
ÎeÎ

2.

With this notation, by treating the learning of ◊ as an optimization problem and observing
that the objective can be manipulated via monotonic transformations, we can now represent
the learned parameter vector as,

◊̂ = argmin
◊œRd

1
n

Îy ≠ X◊Î
2 = argmin

◊œRd

Îy ≠ X◊Î
2. (2.13)

The search for ◊ that optimizes (2.13) is known as the least squares problem. Figure 2.5
presents a visual representation of the squared loss in the case of a single input feature
(p = 1 and d = 2). In this case we seek a line specified by b and w1 such that the sum of the
squares (total area of blue boxes in the figure) is minimized.
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2 Principles of Machine Learning - DRAFT

The least squares solution can be easily derived by first computing the gradient of ÎX◊ ≠ yÎ
2

with respect to ◊ using vector and matrix di�erentiation rules (see Appendix A) as

ˆÎy ≠ X◊Î
2

ˆ◊
= ˆ(y ≠ X◊)€(y ≠ X◊)

ˆ◊

=
ˆ

!
y€y ≠ 2y€X◊ + ◊€X€X◊

"

ˆ◊
= ≠2X€y + 2X€X◊.

(2.14)

Then, by setting the gradient to 0, we get the normal equations,

X€X◊ = X€y, (2.15)

which describe vectors ◊ that obtain a zero gradient, and, in this case, it can also be shown
that they are global minima of the objective (see further discussion in Chapter 4 about
global and local minima).

The normal equations have a unique solution when the d ◊ d matrix X€X, also known
as the Gram matrix of X, is invertible. In this case we can represent the estimator as
◊̂ = (X€X)≠1X€y, or, by setting X† = (X€X)≠1X€, we have,

◊̂ = X†y, (2.16)

where X† is called the Moore-Penrose pseudo inverse of X.

In fact, the Moore-Penrose pseudo-inverse, X†, can be represented in di�erent ways. An
alternative form to (X€X)≠1X€ is based on the singular value decomposition7 (SVD) of
X. Here, X = U�V € where U is an n ◊ n orthogonal matrix, � is an n ◊ d matrix with
non-zero elements only on the main diagonal, and V is a d ◊ d orthogonal matrix. Using the
SVD we can represent the Moore-Penrose pseudo-inverse as

X† = V �+U€, (2.17)

where �+ contains the reciprocals of the non-zero (main diagonal) elements of �, and has
0 values elsewhere. This SVD-based representation holds both if X€X is singular or not.
Hence (2.17) can be viewed as the more general representation of the pseudo-inverse. Note
that X€X is non-singular if and only if the matrix X is a full column rank matrix (i.e., the
columns of X are linearly independent).

Note that, if X is not full column rank (i.e. X€X is singular), then there is not a unique
solution to the normal equations (2.15). However, the solution given via (2.16), using the
SVD form (2.17), has a minimal norm for ◊ out of all possible solutions.

In the context of high dimensional data when the number of features p is greater than the
number of samples n, the design matrix X is never full column rank. This issue also appears
when some of the features are linear combinations of the others. Even if X is mathematically
full column rank, in some situations there is (strong) multicollinearity among the features,
meaning that some of the features are approximately linear combinations of the others. This

7Note that the form of SVD presented here is sometimes called the full SVD. A di�erent form called the
reduced SVD is used in Section 2.6 in the context of PCA.

42



i
i

i
i

i
i

i
i

2.3 Linear Models at Our Core

yields an X€X matrix that is ill-conditioned and di�cult to invert. In all these cases, the
SVD-based representation (2.17) is useful for using in (2.16) to obtain a solution for (2.15).

Other Loss Functions

A first appealing result for the choice of the squared error loss function (2.12) is the closed
form solution (2.16) for (2.15). Also, when it is assumed that y is measured with uncorrelated
Gaussian noise ‘, using the squared error loss function (2.12) is equivalent to using a solution
derived by the maximum likelihood estimation method. This is a technique widely used in
statistics for parameter estimation which is further discussed in Section 3.1 in the context of
logistic regression.

A second popular loss function for the linear model is the absolute error loss,8

Ci(◊) =
--y(i)

≠ ŷ(i)--. (2.18)

It is known to be more robust to outliers, however, even in the case of the linear model,
there is no closed-form solution for estimating the parameters. From a statistical point of
view, minimizing the absolute error loss is equivalent to maximum likelihood estimation
when assuming a Laplace distribution9 for the error noise ‘. The Laplace distribution has
heavier tails than the Gaussian distribution, see Figure 2.6 (b). With these tails, large noise
values, i.e. outliers, are more probable than with the Gaussian noise and hence the loss
(2.18) is typically more robust to extreme values.

A third alternative, which is a hybrid between the absolute error loss and squared error loss,
is the Huber error loss. It is parameterized by a hyper-parameter ” and represented via,

Ci(◊) =

Y
]

[

1
2 (y(i)

≠ ŷ(i))2, if
--y(i)

≠ ŷ(i)
-- < ”,

”
--y(i)

≠ ŷ(i)
-- ≠

1
2 ”2, otherwise.

(2.19)

This loss function penalizes small errors quadratically and deals with outliers by penalizing
larger errors similarly to the absolute error loss. Figure 2.6 (a) provides a visual representation
of these three loss functions. Even if it appears to be an appealing tradeo� between the
absolute error loss and squared error loss, the Huber loss has the disadvantage of having to
calibrate the arbitrary extra hyper-parameter ” and, like the absolute error loss, it does not
have a closed form solution.

Categorical Input Features

We have so far considered numerical input features. We now describe methods for dealing
with categorical input features. The methods we present are useful for linear models as well
as almost any machine learning and deep learning model.

Before describing the general method of using one-hot encoding, let us highlight two cases
that sometimes receive special treatment. One such case is when the categorical feature is

8Note that the use of the absolute error loss (2.18) in (2.11) is sometimes called the L1 loss as it is
related to the L1 norm. Similarly the use of the square loss (2.12) is sometimes called the L2 loss.

9This is a probability distribution over R with density function in the variable u, proportional to e
≠ |u≠µ|

b ,
where µ œ R is the mean and b > 0 is a scaling parameter.
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2 Principles of Machine Learning - DRAFT

(a) (b)

Figure 2.6: Loss function and error distribution alternatives. (a) Squared, absolute, and Huber
loss functions. (b) Gaussian (normal) and Laplace error distributions.

binary. For example, assume a feature that only takes on two values red or blue. In such a
case, it can be encoded via 0 and 1 respectively and used as a numerical variable. A second
special case is when the categorical feature is an ordinal variable, which may be interpreted
as or converted to a numerical value. For example if the feature is a “user satisfaction rating”
with values low, medium, and high, it may be transformed to numerical values 0, 1, and 2.
Note however that this practice is sometimes problematic since di�erent spacings between
the assigned numerical values would yield di�erent interpretations of the features and in
general yield di�erent models. For example assigning numerical values of 0, 1, and 4 would
indicate a bigger gap between medium and high than between low and medium.

Moving on to the general case of non-binary, nominal, categorical features one can use
one-hot encoding, a method that we present now. Denote the number of possible values that
the feature attains via L and here for simplicity assume the feature values are 1, . . ., L. The
idea is to create L binary features in place of the categorical feature where, if the categorical
feature is z, we construct an L-dimensional vector z̃ =

!
1{z = 1}, . . . , 1{z = L}

"
with 1{·}

denoting the indicator function taking on 0 or 1. That is, z̃ = ez where ez is the unit vector
with 1 in the position z and 0 elsewhere; see the unit vector notation defined in Section 1.6.

Thus, each one-hot encoded categorical feature is expanded into such a vector and, with this
encoding, the new transformed total number of features is,

p̃ = pnum +
ÿ

i categorical
Li,

where pnum is the number of numerical features and Li is the number of possible values for
categorical feature i.

To see how this one-hot encoding a�ects the design matrix, assume for simplicity that in
addition to the pnum numerical features there is a single categorical feature with L levels. In
this case the n ◊ (1 + pnum + L) dimensional design matrix is,

X =

S

U
| | | | |

1 x(1) . . . x(pnum) z̃(1) . . . z̃(L)
| | | | |

T

V with z̃(j) =

S

WWU

z̃(1)
j

...
z̃(n)

j

T

XXV .
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2.3 Linear Models at Our Core

Here z̃(j) for j = 1, . . . , L is the vector of indicator variables that marks which observations
are at level j for the categorical feature. In statistics, the new L columns z̃(j) are called
indicator or dummy variables. However, in statistics the practice is to include only L ≠ 1
dummy variables instead of L. One reason for this is that when using L dummy variables
the design matrix X will never be a full column rank matrix since the sum of the L dummy
columns is equal to the first column of 1s. Thus, traditional statistical practice only includes
L ≠ 1 dummy variables in the model and the remainder is considered as the reference level.
An alternative is to remove the bias term from the model (meaning drop the first column of
X) and then keep all L dummy variables.

Multi-class Classfication

Now that we understand the linear model as well as ways of dealing with categorical variables,
let us consider an application of the linear model for multi-class classification. We note that
linear models are generally far from the state of the art when it comes to their application
for classification problems, yet seeing the linear model applied to classification is instructive.

In classification problems each of the labels y takes on one of a finite number of values. The
number of possible values is denoted via K. When K = 2 it is a binary classification problem
but generally for K > 2 it is a multi-class classification problem. Notationally it is convenient
to denote the set of label indices as {1, . . . , K} and consider some bijection between these
indices and the actual label values e.g. banana, dog, etc. As a concrete example we consider
the MNIST digits dataset where the label values are the digits 0,1,. . .,9 and notationally we
use the label indices {1, . . . , K = 10}. Here the obvious bijection shifts by 1.

A general scheme for multi-class classification is introduced in Section 3.3 in the context of
multinomial (softmax) regression, and is further employed with other deep learning models
in the chapters that follow. An alternative, which we introduce now in the context of linear
models, is based on the fusion of multiple binary classification models into a multi-class
classifier. For this we introduce two general methods, namely one vs. rest (also known as
one vs. all) and one vs. one.

Both of these methods assume we have trained binary classifiers for sub-problems. With
the one vs. rest strategy, we assume the availability of models for binary classification f◊i(·)
for i = 1, . . . , K where the ith model can discriminate between the label index i treated
as positive and otherwise if the label index is not i then negative. With the one vs.
one strategy we have K(K ≠ 1) binary classifiers10 denoted f◊i,j (x) for all i, j = 1, . . . , K
such that i ”= j. Here the (i, j)th classifier discriminates between the label being of index i
(positive) or index j (negative).

The output range obtained by f◊i(·) or f◊i,j (·) is generally a value on the real number line R.
Positive outputs indicate positive while negative outputs indicate negative. The farther
the model output is from 0 the stronger the confidence of the classification decision. A cuto�
in similar nature to (2.5) is to apply the sign(·) function11 to the model output and conclude
either positive in case of +1 or negative in case of ≠1.

10In practice only half of this number of classifiers is needed because the classifier for (i, j) can be reverted
to the classifier (j, i).

11In case the classifiers were trained with the 1, 0 encoding as in the case of logistic regression it is easy
to transform them.
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2 Principles of Machine Learning - DRAFT

Now the one vs. rest or one vs. one strategies carry out prediction via,

‚Y =
I

argmax
i=1,...,K

f◊i(x) in case of one vs. rest,
argmax

i=1,...,K

q
j ”=i

sign
!
f◊i,j (x)

"
in case of one vs. one.

The idea of the one vs. rest strategy is to pick the label index which is most probable among
the K classification models where each model focuses on a di�erent label index. The idea of
the one vs. one classifier is to pick the label i that when compared to the other K ≠ 1 labels,
was chosen most often. This is achieved via comparison of a summation of sign

!
f◊i,j (x)

"
for

all other labels j. In both cases, one needs to supply rules for handling ties in the argmax in
the final decision, yet these details are generally insignificant.

We proceed with an example of using both strategies for the MNIST dataset using a linear
model. The crux in creating the supporting binary classifiers is to set the label vector y used
in (2.16) to have values of +1 for samples that are positive and values of ≠1 for samples
that are negative.

For example, when learning the f◊3
(·) classifier we consider all digit images in the original

dataset with the label value 2 as having12 y = +1 and otherwise ≠1. Out of the 60, 000
MNIST training samples there are 5, 958 training samples that satisfy y = +1 and then
for y = ≠1 there are 54, 042 samples. Obtaining the parameters for this classifier using
(2.16) uses the design matrix X as in (2.10) which is of dimension 60, 000 ◊ 785 where
785 = 1 + 28 ◊ 28. Each row of X corresponds to a di�erent image and each of the columns
2 to 785 corresponds to a di�erent pixel.

Similarly, when learning the f◊3,8
(·) classifier (this compares the digit 2 and the digit 7)

used in one vs. one, we set +1 for all 5, 958 training samples that have 2 and set ≠1 for
all 6, 265 samples that have a label value of 7. Here the design matrix X is of dimension
12, 223 ◊ 785 since 5, 958 + 6, 265 = 12, 223.

To obtain predictors ◊̂i or ◊̂i,j using (2.16) we compute the pseudo inverse of the respective
design matrices using (for example) numerical procedures for (2.17). Note that the ◊̂i

classifiers require only a single pseudo inverse for all i while ◊̂i,j has a di�erent design matrix
for each (i, j) pair and hence requires its own pseudo inverse.

12Here 2 is the label value that matches label index 3 when using label indexing {1, . . . , K = 10}.
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2.3 Linear Models at Our Core

Table 2.1: Confusion matrices for the MNIST digit test set using linear classifiers trained on the
training set. (a) one vs. rest achieves an accuracy of 0.8603. (b) One. vs. one achieves an accuracy
of 0.9297.

Decision
0 1 2 3 4 5 6 7 8 9

R
ea

lit
y

0 944 0 18 4 0 23 18 5 14 15
1 0 1107 54 17 22 18 10 40 46 11
2 1 2 813 23 6 3 9 16 11 2
3 2 2 26 880 1 72 0 6 30 17
4 2 3 15 5 881 24 22 26 27 80
5 7 1 0 17 5 659 17 0 40 1
6 14 5 42 9 10 23 875 1 15 1
7 2 1 22 21 2 14 0 884 12 77
8 7 14 37 22 11 39 7 0 759 4
9 1 0 5 12 44 17 0 50 20 801

(a)

Decision
0 1 2 3 4 5 6 7 8 9

R
ea

lit
y

0 961 0 9 9 2 7 6 1 7 6
1 0 1120 18 1 4 5 5 16 17 5
2 1 3 936 18 6 3 12 17 8 1
3 1 3 12 926 1 30 0 3 23 11
4 0 1 10 2 931 8 5 11 10 30
5 6 1 5 20 1 800 19 1 36 12
6 8 4 10 1 7 17 908 0 10 0
7 3 1 10 7 4 2 1 955 10 21
8 0 2 22 21 3 15 2 1 840 3
9 0 0 0 5 23 5 0 23 13 920

(b)

Now after training on the 60, 000 MNIST training samples and evaluating performance
on the 10, 000 testing samples, we obtain an accuracy of 0.8603 using one vs. rest and an
accuracy of 0.9297 using one vs. one. As MNIST is generally a balanced dataset, the use of
accuracy to evaluate performance is sensible, and the level of accuracy obtained is impressive
since the linear model is very simple and training these models using the pseudo-inverse
computation only takes a few seconds at most. However, to get industrial grade performance
one requires more advanced models such as the convolutional neural networks of Chapter 6.
As mentioned in the previous chapter state of the art performance for MNIST is at an
accuracy of over 99.8%.

When evaluating multi-class classifiers it is common to use a confusion matrix similar to the
2 ◊ 2 confusion matrix presented in Section 2.2 for the case of binary classification. Table 2.1
presents the confusion matrices for both one vs. rest and one vs. one. It is insightful to pick
out the entries where non-negligible misclassification occurs. For example with the one vs.
rest classifier multiple real digits of 7 were classified as 9. This occurred 77 times. Similarly
in the one vs. one case there were 36 misclassifications of the digit 5 as the digit 8.
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2 Principles of Machine Learning - DRAFT

2.4 Iterative Optimization Based Learning
Linear models coupled with quadratic loss (2.12) are gifted with a closed form solution
for the parameter estimate as appearing in (2.16). This solution, which is based on the
pseudo-inverse (2.17), is well studied in the field of numerical linear algebra and is typically
suited for e�cient numerical evaluation, a topic that we do not cover here any further. For
example, in the section above, the pseudo inverse computation of the 60, 000 ◊ 785 design
matrix X used for MNIST digit classification using the one vs. rest method can be evaluated
in about a second on a modern laptop. Nevertheless, there are multiple scenarios where
this closed form solution may not be used. This is the case when we use an alternative loss
function to the quadratic loss, such as (2.18) or (2.19). Problems with using the explicit
optimal quadratic solution may also arise when the number of features p is very large. In
such cases and others, more generic methods for optimization are needed.

We now present a general iterative optimization method for obtaining this solution. It can
be used in such scenarios where the pseudo-inverse based computation does not work, yet
more importantly it serves to illustrate how gradient based optimization interplays with
machine learning. Indeed the more complex deep learning models on which this book focuses
use this type of method, and its generalizations, almost exclusively. We note that there are
other methods used as well and Chapter 4 focuses entirely on optimization. Our purpose
here is simply to introduce the essence of the most basic technique, namely gradient descent.

Algorithm 2.1: Gradient descent
Input: Dataset D = {(x(1), y(1)), . . . , (x(n), y(n))},

objective function C(·) = C(· ; D), and
initial parameter vector ◊init

Output: Approximately optimal ◊
1 ◊ Ω ◊init

2 repeat
3 Compute the gradient ÒC(◊)
4 ◊ Ω ◊ ≠ –ÒC(◊)
5 until ◊ satisfies a termination condition
6 return ◊

This gradient descent procedure, presented in Algorithm 2.1, executes over iterations indexed
by t = 0, 1, 2, . . . and works by taking small steps in the direction opposite to the gradient.
That is, it traverses ‘downhill’ each time trying to descend in the steepest direction. In
its simplest form, steps sizes are controled by a fixed – > 0 called the learning rate. After
some initialization with the vector ◊(0) = ◊init, in each iteration t, the next vector ◊(t+1) is
obtained via,

◊(t+1) = ◊(t)
≠ –ÒC(◊(t)). (2.20)

The algorithm repeats (2.20) where the key object that requires computation at each
iteration t is the gradient of the loss function ÒC(◊(t)). For complex deep learning models
this computation is one of the core components of a deep learning framework and is carried
out using the backpropagation algorithm studied in Chapter 5. However, for simpler models
such as the linear model or logistic regression type models of Chapter 3, we have explicit
expressions for the gradient.
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2.4 Iterative Optimization Based Learning

In the case of the linear model with quadratic loss, we have already computed the gradient
in (2.14) and we can represent it as,

ÒC(◊) = 2
n

X€(X◊ ≠ y). (2.21)

In general the algorithm iterates over t until ◊(t+1) and ◊(t) are close as measured by some
stopping criteria such as,

Î◊(t)
≠ ◊(t+1)

Î < Á, (2.22)

with some fixed Á > 0. Other stopping criteria and variants of this method are studied in
detail in Chapter 4. The final ◊(t+1) is used as ◊̂ and if – and Á are well chosen the algorithm
output may closely approximate the optimal ◊.

Figure 2.7: A contour plot of the loss function for a simple linear regression problem. The optimal
point in green is reached when starting gradient descent at the origin (black point) with – = 0.01
or – = 0.0235. However with the learning rate slightly higher at – = 0.024 gradient descent does
not converge.

One of the main di�culties with the application of gradient descent is choosing the learning
rate –. As an illustration, Figure 2.7 presents a contour plot of the squared error loss function
associated with simple linear regression similar in nature to the Boston housing price data
example of Figure 2.3 (a) where we optimize to find ◊̂ = (—̂0, —̂1). When running with
Á = 10≠5 and starting ◊init at the origin, we see that if – = 0.01 the algorithm terminates
near the optimal parameters in 3, 109 iterations. If – = 0.0235 the algorithm terminates
near the optimal parameters quicker with 1, 446 iterations yet follows a more jagged path.
Finally, when running with the learning rate that is just slightly higher at – = 0.024, the
algorithm diverges and does not terminate at all. The plot in this divergent case is only for
the first 300 iterations where the growing oscillations are still in the vicinity of the optimum.
With further iterations the values quickly diverge.
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2 Principles of Machine Learning - DRAFT

This simple example illustrates that the value of the learning rate – is crucial. Di�erent
values imply drastically di�erent behaviours. A more thorough investigation of gradient
descent and its generalizations is in Chapter 4. Interestingly, for linear models more explicit
results are available, as we present now.

Learning Rate Analysis for Linear Models

In general there is not a simple analytical way to determine a suitable learning rate –.
Chapter 4 presents adaptive generalizations of gradient descent. Yet, universally there are
no closed form recipes. Nevertheless, when it comes to the special case of the linear model,
analysis of the dynamics of gradient descent is analytically attractive and we may explicitly
describe the range of – for which convergence takes place. This description is not necessarily
of direct practical use. However, it gives insight into the nature of gradient descent.

Consider the linear model with design matrix X as in (2.10) and denote ⁄max as the maximal
eigenvalue of the Gram matrix X€X. We can now show that gradient descent converges13

to a solution of the normal equations (2.15) as long as

– <
n

⁄max
. (2.23)

Note that for the data used in Figure 2.7, ⁄max = 20, 670.33 and n = 490. Hence in this case
the algorithm converges for – in the range (0, 0.02371) and this bound is in agreement with
the examples of Figure 2.7 where the first two paths have – in this range and the third path
with – = 0.024 diverges.

To see (2.23) use the gradient expression (2.21) and the gradient update rule of (2.20) to
obtain the recursion,

◊(t+1) = ◊(t)
≠ –

2
n

X€(X◊(t)
≠ y)

= (I ≠ –
2
n

X€X)
¸ ˚˙ ˝

A

◊(t) + –
2
n

X€y
¸ ˚˙ ˝

c

,

or in short ◊(t+1) = A◊(t) + c. Such a recursion is known as an a�ne discrete time linear
dynamical system and equilibrium points of such a system, denoted ◊ú satisfy, ◊ú = A◊ú + c
or (I ≠ A)◊ú = c. In our case, using A and c, it is evident that such equilibrium points are
solutions of the normal equations (2.15). For simplicity let us assume here that X is full
column rank and hence there is a unique ◊ú.

It follows from linear systems theory that the spectral radius14 of the matrix A determines
the convergence or non-convergence of ◊(t) to ◊ú. Specifically, if the spectral radius of the
matrix A is less than unity, then ◊(t) converges to ◊ú for any initial ◊(0) and, if the spectral
radius is greater than unity, then for any initial ◊(0) the sequences diverges (the border case
of the spectral radius being 1 is indeterminate). Hence, putting aside the border case of a
spectral radius of 1, we see that convergence occurs if and only if the eigenvalues of A are in
(≠1, 1).

13Here “convergence” formally means that for any Á2 > 0 there is an Á > 0 of (2.22) where the algorithm
terminates in a finite number of iterations with Î◊

ú ≠ ◊
(t+1)Î < Á2 and ◊

ú is a minimizer of the optimization
problem.

14The spectral radius of a square matrix is the largest of all magnitudes of the eigenvalues.
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2.4 Iterative Optimization Based Learning

Now, since since X€X is a symmetric matrix, the eigenvalues of X€X are real and since
X€X is positive semidefinite (this is a property of any Gram matrix), the eigenvalues
lie in the range (0, ⁄max] with ⁄max > 0. Further, the eigenvalues of ≠2–n≠1X€X lie in
the range [≠2–n≠1⁄max, 0) and the eigenvalues of A = I ≠ 2–n≠1X€X lie in the range
[1 ≠ 2–n≠1⁄max, 1). Thus the critical inequality that ensures that the spectral radius of A is
less than 1 is

≠1 < 1 ≠ 2–
1
n

⁄max,

which is equivalent to (2.23).

The Loss Landscape and Standardization of Inputs

In Section 2.1 we presented standardization of inputs via (2.2) where the sample mean and
sample variance are computed via (2.1). We now show that such standardization also a�ects
the loss landscape, often yielding improvement in the execution of gradient descent. As above,
our analysis is in the realm of linear models where explicit analysis is possible.

To illustrate this concept, we consider a simple case of a linear model with two input features
x1 and x2 where,

y = w1x1 + w2x2 + ‘.

This is similar to the simple regression models of Section 2.2 yet is without an intercept
term. Here, with n data samples, the n ◊ 2 design matrix X has columns composed of the
vectors (x(1)

i
, . . . , x(n)

i
) for i = 1, 2; the labels vector is y = (y(1), . . . , y(n)); and the model

parameters are ◊ = (w1, w2). The square loss function where for simplicity we omit the 1/n
term in (2.11) is

C(◊ ; X, y) := Îy ≠ X◊Î
2 = (y ≠ X◊)€(y ≠ X◊)

= ◊€X€X◊ ≠ 2y€X◊ + y€y.
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Figure 2.8: Contour levels of a loss function for an example with p = 2 parameters. (a) The
loss as a function of (w1, w2) for the original data has accentuated elliptical contours. (b) The
loss as a function of the parameters, (w̃1, w̃2), associated with standardized data, yields much less
accentuated contours.
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2 Principles of Machine Learning - DRAFT

A contour plot for some arbitrary (not standardized) data is illustrated in Figure 2.8 (a). It
is evident that the contour levels of the loss function are ellipsoids. For some given loss level
C, it can be shown that the lengths of the principal axes of the ellipse are

Ò
k

⁄i
for i = 1, 2,

where ⁄1 and ⁄2 are the eigenvalues of the Gram matrix X€X and k = C ≠ y€y. With this,
the elongation of the ellipse, which is the ratio of these lengths, is,

RX =

Ò
k

⁄1Ò
k

⁄2

=
Ú

⁄2
⁄1

.

Now, when standardizing the inputs, each of the columns of X is transformed separately via
(2.2). In such a case, the loss function associated with the standardized data is C(◊ ; Z, y)
where we denote by Z the design matrix of the standardized data. It can now be shown that

Z€Z = n

3
1 fl
fl 1

4
, where fl = 1

n

nÿ

j=1
z(j)

1 z(j)
2 ,

is also known as the sample correlation between the two features. Note that fl œ [≠1, 1].

With such a normalization and an explicit form for the Gram matrix Z€Z, we can compute
the eigenvalues of Z€Z to be ⁄1 = 1 + |fl| and ⁄2 = 1 ≠ |fl|. Thus, the elongation of the
ellipsoid is

RZ =
Ú

⁄2
⁄1

=

Û
1 + |fl|

1 ≠ |fl|
.

It is evident that in cases where the correlation between the features is low, then RZ ¥ 1
and this implies that the loss landscape of the standardized data is much more similar to
Figure 2.8 (b).

Now, in terms of gradient descent, taking steps in a loss landscape such as Figure 2.8 (b) is
generally more e�cient than using the loss landscape in Figure 2.8 (a). Hence it is expected
that as long as fl is not close to 1 or ≠1, carrying out standardization will help gradient
descent converge faster. Note that, while this analysis is carried out on a simplistic p = 2,
d = 2 linear model with quadratic loss, the principle often applies to more complicated loss
landscapes as well. Further note, that with standardization of the features or any other
transformation one also has to encode the standardization transformation as part of the
deployed model, since the model is now for the standardized features z instead of x.

2.5 Generalization, Regularization, and Validation
The data available while learning and calibrating a model is called the seen data and future
data is called unseen data. These concepts were introduced in Section 2.1. Our purpose of
fitting a model based on seen data is that it will ultimately work well for unseen data, a
property known as generalization ability. With this view, when seeking models that generalize
well, there are two competing negative attributes that one needs to balance, underfitting
and overfitting. Underfitting is a case when the model is too simple and fails to capture the
complexity of the underlying data. On the other hand, overfitting is a case where the model
is so specialized to the training data such that unseen examples that slightly di�er from
the training data do not perform well. The theme of model selection in machine learning
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2.5 Generalization, Regularization, and Validation

and statistics deals with the calibration of underfitting and overfitting to yield models that
generalize well.

Model selection, or the quest for optimal generalization ability, is one of the hardest problems
in machine learning primarily because the unseen data is not available. For this, one needs
to judiciously budget the seen data by splitting it into the training set, the test set, and also
carry out validation in one of several ways that we outline in this section. In quantifying
generalization ability there are several plots and measures that one can use. These include
the quantification of model bias, model variance, and the bias and variance tradeo�. We
present these in this section.

Some classes of models are by construction designed to enable calibration of underfitting,
overfitting, or the bias–variance tradeo�. One general technique for this is called regularization
which in one common form, includes the introduction of additional terms to the model’s loss
function. We present a taste of regularization techniques here and then in Section 5.7 we
focus on regularization in the context of deep neural network models.

In terms of notation, throughout this book we use D to denote data with n samples. This
sometimes means only the training set and in other cases means all of the seen data. When
we focus on training specific types of models such as in Section 2.3, the symbol D is treated
as the data allocated specifically for training and hence we assume there are n training
samples for training and potentially other samples for testing and/or validation that we do
not account for. In other cases D is treated as all of the available seen data, part of which
may be used for testing via a testing or hold-out set which we denote via Dtest with ntest
samples.

Performance on Unseen Data

We have already introduced several examples of performance metrics in Section 2.2. These
include accuracy (2.6), the F1 score (2.7), mean square error in the case of regression, and
others. In some cases one wishes to maximize the performance metric where as in other
cases one wishes to minimize it. Note that the loss function used in model training is in
some instances directly related or equal to the performance metric, and, in other instances,
it is di�erent.

It is notationally convenient to relate a performance function to the performance metric.
We denote the performance function via P(·, ·) and it penalizes di�erences between a single
predicted label ŷ and the actual label y. For example when the mean square error performance
metric is used then the performance function is P(ŷ, y) = (ŷ ≠ y)2. As another example, if
the accuracy performance metric is used in classification then the performance function is
P( ‚Y, y) = 1{ ‚Y ”= y}, where 1{·} is the indicator function and y is taken as the actual label.
Note that we construct the performance function such that small values are desirable.15

When we train a model and create a predictor either for regression or classification, we
use the data D and based on the model obtain a predictor denoted by ‚y(· ; D). Now, for
some data pair (x, y), the value ‚y(x ; D) is the prediction of y and the performance function
evaluated for the prediction of this data pair is P

!
‚y(x ; D), y

"
.

15In this section, to avoid notational confusion between ŷ and ‚Y, we use the notation ŷ for both cases.
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2 Principles of Machine Learning - DRAFT

As outlined in Section 2.1, we ensure that the nature of the seen data is similar to that
of unseen data and with this, the underlying modelling assumption is that both seen and
unseen data are generated by the same underlying processes. Hence, for both theoretical and
empirical analysis, unless we know otherwise, we assume that the probability distribution of
each data sample (x(i), y(i)) is the same for all i = 1, . . . , n and is further the same as the
distribution of each unseen data sample (xı, yı). That is, we assume there is an underlying
probability space for the observations and we vaguely denote the joint probabilities of the
features and label via P(x, y). Our usage of probabilistic statements here is only via expected
values where we denote the expectation operator via E[·] and often use a subscript for the
expectation to denote the objects that are treated as random.

With this notation, the expected value of the performance of the trained model for unseen
data points (xı, yı) is denoted via,

Eunseen = E(xı,yı)
#
P

!
‚y(xı; Dtrain), yı

"$
, (2.24)

where Dtrain is the training data. This quantity is called the generalization performance or
generalization error. It may be viewed as an average over all possible unseen data points and
hence Eunseen evaluates how well the predictor or model generalizes. With a given training
dataset Dtrain, our aim is to build a model that yields the smallest possible Eunseen.

Unfortunately, since it is based on unseen data, Eunseen is a theoretical construct and since
we do not know the probability law P(x, y) exactly, we cannot compute Eunseen. However,
as a first attempt, we can approximate the expectation by averaging over available training
data. That is,

Etrain = 1
ntrain

ÿ

(x,y)œDtrain

P
!
‚y(x ; Dtrain), y

"
, (2.25)

where ntrain is the number of observations in Dtrain. It turns out that Etrain is typically a
poor estimator of Eunseen because the same training observations that were used to create
the predictor are also used to evaluate the predictor performance. That is, the learned
parameters of the model ◊̂ that are used to construct ŷ(·) depend on Dtrain. Hence while
Etrain does present us with some insight about the ability of our model to reproduce the
data that has been learned, it lacks the ability to estimate performance on unseen data.

In order to get a better estimate of Eunseen, it is preferable to average over data that has
not been used for training the model, namely over the test set. In an ideal situation where
we use the test set only once and do not calibrate and adjust the model based on the test
set, the test set observations are completely independent of the model. In such a case, the
estimator,

Etest = 1
ntest

ÿ

(x,y)œDtest

P
!
‚y(x; Dtrain), y

"
, (2.26)

is a good estimator of Eunseen, especially for significantly large ntest. Specifically under the
assumption that the unseen data and the test set have the same distribution, the expected
value of Etest is exactly Eunseen making it a statistically unbiased estimator of performance.
Further it is statistically consistent in the sense that if we are able to allocate more testing
data and ntest æ Œ then Etest æ Eunseen. This is simply a consequence of the law of large
numbers.16 Note that these desirable statistical properties are only for a fixed Dtrain.

16Formally the convergence Etest æ Eunseen may be seen as convergence in probability in one form or
almost sure convergence in a di�erent form. We do not focus on such subtleties here.
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The straightforward statistical properties of unbiasedness and consistency enjoyed by Etest
make the practice of holding out a test set for performance evaluation attractive. However,
setting aside a test set is costly as we e�ectively ‘throw away’ ntest observations and do
not use them for improving the model. For this reason, it is often tempting in practice to
iteratively evaluate (2.26) while adjusting model settings or hyper-parameters. This frowned
upon practice breaks the independence between Dtest and the model at which point the
desirable statistical properties of Etest are lost. Hence, as an alternative, we use a validation
set or some other method as described below.

In addition to using an independent test set as in (2.26), other alternatives for estimation
of performance also exist, which include using K-fold cross validation. This is a topic we
describe below in the context of validation and hyper-parameter optimization, yet it may
also be used for purposes of performance evaluation.

Model Choice, Underfitting, and Overfitting

The generalization performance in (2.24) is specific to a fixed single training dataset Dtrain.
However, for a given problem, when considering which type of model to use and what
hyper-parameters to choose, it is often useful to think about the expectation over all possible
training datasets. For this we define the expected generalization performance,

ÂEunseen = EDtrain
[Eunseen] = EDtrain

#
E(xı,yı)[P(‚y(xı; Dtrain), yı)]

$
. (2.27)

It represents the average of Eunseen over all possible datasets Dtrain of a given size from the
same probability law P(x, y) where we keep in mind that each dataset potentially yields a
di�erent representation of the model.

A similar quantity for the training set is

ÂEtrain = EDtrain
[Etrain] = 1

ntrain
EDtrain

Ë ÿ

(x,y)œDtrain

P(‚y(x ; Dtrain), y)
È
. (2.28)

Keep in mind that ÂEunseen and ÂEtrain are functions of the type of model used, the hyper-
parameters, and the training dataset size. With such relationships present, the machine
learning engineer can in principle ponder about the theoretical shape of ÂEunseen and ÂEtrain
and seek a model that appears best. In this respect the generalization gap defined as
Â� = ÂEunseen ≠ ÂEtrain is also important.

The combination of ÂEunseen, ÂEtrain, and the generalization gap Â� based on estimates, allows
one to seek a balance between underfitting and overfitting. There are multiple suggestions
on “best practice” for using the available data to estimate ÂEunseen, ÂEtrain, Â�, and to select
the best model. A thorough discussion of such best practices is beyond our scope. The notes
and references at the end of this chapter link to further reading. Instead, let us consider the
schematic Figure 2.9, which presents typical behavior of ÂEunseen and ÂEtrain as a function of
model complexity.

Generally, as model complexity increases, expected training performance, ÂEtrain, improves
(decreases) since complex structured models can explain the training data better. At high
extremes this is overfitting. Similarly an opposite phenomenon is that models with low
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Figure 2.9: Typical behaviour of expected generalization performance and expected training
performance as a function of model complexity

complexity are not able to describe the data well. The tradeo� between these two regimes is
obtained at the minimum of ÂEunseen marked by the vertical dashed line.

In practice, unless presented with an infinite pool of data, one is not able to evaluate
ÂEunseen and ÂEtrain directly and one is certainly not able to evaluate these quantities over
all possibilities of models, hyper-parameters, and sample sizes. Nevertheless, much of the
practice of model selection revolves around getting a feel for the dependence of ÂEunseen and
ÂEtrain on model choice, hyper-parameters, and sample size. This is typically done using very
limited measurements from one or several training and validation executions.

Typical practice is to monitor empirical estimates of these quantities as a function of model
complexity, hyper-parameter choice, or sample size. The most basic practice is evaluation of
Etrain of (2.25) together with a validation performance measurement that is of similar nature
to Etest of (2.26) such as the validation performance or K-fold cross validation performance
which are defined in the sequel. See (2.37) and (2.38) below.

As one simple illustrative example capturing the tradeo�s of model complexity, let us consider
linear models with polynomial features applied to synthetic univariate (p = 1) data. The
model

y = —0 + —1x + —2x2 + . . . + —kxk + ‘ (2.29)

is denoted by Mk where k is the order of the polynomial. Hence M0 is the constant model,
M1 is the simple linear model, M2 is the quadratic model, and so on. A quadratic model of
this nature was used in (2.4) of Section 2.2. In this framework, model complexity corresponds
to the degree of the polynomial model.

Now taking one possible realization of Dtrain, in Figure 2.10 (a) we use this family of
models to fit data of size ntrain = 10. With this single realization we clearly see underfitting
behaviour for models M0 and M1. In contrast, model M9 appears to overfit the observed
data. Between these two extremes, model M3 looks like an appropriate representation of
the observed data.
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Figure 2.10: Increasing model complexity illustrated via linear models with polynomial features
where k, the order of the polynomial, captures the complexity. (a) Fitting several models to a single
realization with n = 10 data-points. (b) The training performance in red and simulation estimates
of the generalization performance in black.

In Figure 2.10 (b) the red curve presents Etrain for this dataset. It is obvious that as k
increases training fit improves. Further, in this hypothetical example since we know the
underlying process with probability law P(x, y) used for purposes of simulation of synthetic
data, we may sample as many (xı, yı) pairs as we wish, to obtain a reliable estimate of
Eunseen. This curve is plotted in black where in this case we use 10, 000 repetitions for each
k, each time with the fixed model based on our single available dataset, Dtrain. This Monte
Carlo simulation, makes it clear that when k = 9 or k = 8 there is overfitting and when
k = 0, 1, 2 there is underfitting. In practice plots exactly like Figure 2.10 (b) cannot be
produced because we do not know P(x, y). Instead one can resort to estimates based on
cross validation to obtain curves similar to the black curve in Figure 2.10 (b).

We also mention that, while we stated that key elements that a�ect expected performance
are the model type, hyper-parameters, and sample size, in the world of deep learning there
is also an additional major factor, training time. For deep learning models, since the number
of parameters in the model is often huge, letting the model train for longer is similar to
using a more complex model as presented in Figure 2.9.

Bias and Variance Decomposition

A related view to the analysis of expected generalization performance and the generalization
gap is the so-called bias and variance decomposition. It focuses on the expected generalization
performance in production, ÂEunseen, and decomposes it into a sum of terms related to model
bias, model variance, and the noise magnitude. With this decomposition, underfitting is
said to be a situation with high model bias and overfitting is said to be a situation with
high model variance. Using this terminology, balancing model bias and model variance is
equivalent to balancing underfitting and overfitting respectively. This is known as the bias
and variance tradeo�.
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2 Principles of Machine Learning - DRAFT

The bias and variance decomposition is mathematically elegant in the special case of the
square error performance function P(ŷ, y) = (ŷ ≠ y)2 and a specifically assumed underlying
random reality

y = f(x) + ‘, with E[‘] = 0, and ‘ is independent of x. (2.30)

Here x a vector of features and y a scalar real valued label. Further E[‘2] is the variance
of the noise term and is called the inherent noise. In this setting, for some unseen feature
vector xı, the predictor trained on data D is ‚y(xı ; D), which we also denote via f̂(xı ; D)
since it estimates f(xı). Hence the expected generalization performance of (2.27) becomes

ÂEunseen = ED,xı,‘

Ë!
f̂(xı; D) ≠ (f(xı) + ‘)

"2
È
. (2.31)

Now, a standard algebraic manipulation common in statistics is to add and subtract
ED,xı [f̂(xı; D)] inside (2.31), expand the expression, apply the external expectation operator,
and then cancel out terms that have zero expectation (resulting from E[‘] = 0 and the fact
that ‘ and xı are independent). This manipulation transforms (2.31) to the bias-variance-
noise decomposition equation,

ÂEunseen =
1
E[f̂(xı ; D)] ≠ E[f(xı)]

22

¸ ˚˙ ˝
Bias squared of f̂(·)

+ Var
!
f̂(xı ; D)

"
¸ ˚˙ ˝

Variance of f̂(·)

+ E[‘2]¸ ˚˙ ˝
Inherent Noise

. (2.32)

Here the first term is the square of the bias, the second term is the variance taking into
consideration variability both from D used for training and xı, and the third term is the
inherent noise. The expectations and variances in the bias and variance terms are with
respect to the training dataset D and the arbitrary unseen feature vector xı. The main
takeaway from (2.32) is that if we ignore the inherent noise, the loss of the model has two
key components, model bias (technically it is the model bias squared), and model variance.

The model bias is a measure of how a typical (expectation over all possible data samples)
model f̂(· ; D) misspecifies the correct relationship f(·). Model classes with high bias, have
that f̂(· ; D) does not accurately predict f(·). That is, high bias generally implies underfitting.
Similarly, model classes with low model bias are detailed descriptions of reality since the
expected di�erence in the bias term is near zero.

The model variance is a measure of the variability of the model class f̂(· ; D) with respect to
the random sample D and the distribution of xı as implicitly implied by the probability law
of the data P(x, y). Model classes with high model variance are often overfit (to the training
data) and do not generalize (to unseen data) well. Similarly, model classes with low model
variance are much more robust to the training data and generalize to the unseen data much
better.

Similar analysis to the derivation that leads to (2.32) can also be attempted for other
performance functions other than square error, and model structures other than (2.30).
With such other settings, the mathematical elegance of (2.32) is often lost. Nevertheless, the
concepts of model bias, model variance, and the bias and variance tradeo� still persist. For
example in a classification setting we may compare the accuracy obtained on the training
set to that obtained on a validation set. If there is a high discrepancy where the training
accuracy is much higher than the validation accuracy, then there is probably a variance
problem indicating that the model is overfitting.
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2.5 Generalization, Regularization, and Validation

Addition of Regularization Terms

One natural way to control model variance is to induce or force model parameters to remain
within some confined subset of the parameter space. This is called regularization. At the
extreme case where all model parameters are 0, the model variance vanishes as well. In less
extreme cases where there is only some constraint on model parameters, model variance
is still controlled. Such decreases in model variance may imply an increase of model bias.
Nevertheless, the ultimate goal of optimizing the expected performance loss typically merits
such adjustments.

A common way to keep model parameters at bay is to augment the optimization objective
min◊ C(◊ ; D) with an additional regularization term R⁄(◊). The revised objective is then,

min
◊

C(◊ ; D) + R⁄(◊). (2.33)

The regularization term R⁄(◊) depends on a regularization parameter ⁄, which is often a
scalar in the range [0, Œ) but also sometimes a vector. This hyper-parameter allows us to
optimize the bias and variance tradeo�.

A common general regularization technique called elastic net has regularization parameter
⁄ = (⁄1, ⁄2) and,

R⁄(◊) = ⁄1Î◊Î1 + ⁄2Î◊Î
2 with Î◊Î1 =

dÿ

i=1
|◊i| and Î◊Î

2 =
dÿ

i=1
◊2

i
, (2.34)

where d is the dimension of the parameter space.17 Hence the values of ⁄1 and ⁄2 determine
what kind of penalty the objective function will pay for high values of ◊i.

Clearly, with ⁄1, ⁄2 = 0 the original objective is unmodified. In contrast, as ⁄1 æ Œ or
⁄2 æ Œ the estimates ◊i æ 0 and any information in the data D is fully ignored. Indeed, as
⁄1 or ⁄2 grow, the model bias grows while model variance is decreased and overfitting is
mitigated. With regularization there is often a magical ‘sweet spot’ for ⁄ where the objective
(2.33) does a good job at fitting the model.

Particular cases of elastic net are the classic ridge regression, also called Tikhonov regulariza-
tion, and LASSO standing for least absolute shrinkage and selection operator. In the former
⁄1 = 0 and only ⁄2 is used, and in the latter ⁄2 = 0 and only ⁄1 is used. One of the benefits
of LASSO, also present in the more general elastic net case, is that the Î◊Î1 loss allows the
algorithm to remove variables from the model by “zeroing out” their ◊i values completely.
Hence LASSO is very useful as a model selection technique.

The case of ridge regression is slightly simpler to analyze than LASSO and it fits well within
the framework of linear models presented in Section 2.3. We thus present the details now.
For ridge regression the data fitting problem can be represented as,

min
◊œRd

Îy ≠ X◊Î
2 + ⁄Î◊Î

2, (2.35)

17Note that in cases such as linear regression or deep neural networks where there is a constant term (—0
for example), the parameters for the constant term are typically not regularized and hence the norms are
taken only on the other parameters.
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2 Principles of Machine Learning - DRAFT

where the design matrix X is as in (2.10) and we now consider ⁄ as a scalar (previously
in (2.34) it was denoted as ⁄2) in the range [0, Œ). Compare (2.35) with the original least
squares objective (2.13). Now by manipulating the Î · Î

2 expressions, the problem can be
recast as18

min
◊œRd

----

----

5
y
0

6
≠ X̃⁄ ◊

----

----
2

with X̃⁄ =
5

X
Ô

⁄I

6
,

where I is the d ◊ d identity matrix and 0 is the zero vector in Rd. The pseudo-inverse
associated with X̃⁄ is X̃†

⁄
= (X€X + ⁄I)≠1#

X€ ⁄I
$
. Hence, returning to (2.16), the

parameter estimate for ridge regression is

◊̂ = (X€X + ⁄I)≠1X€y. (2.36)

As an aside, note that for any ⁄ > 0 the matrix X€X + ⁄I is not singular even if X€X is
singular. Also as ⁄ æ 0 it can be shown that the pseudo-inverse X̃†

⁄
converges to the SVD

based pseudo-inverse (2.17) associated with X.

We note that while for linear models, the results are very elegant, in other cases closed
form solutions such (2.36) do not exist. Still, many machine learning loss functions can
be augmented with a regularization term. We revisit these concepts in Section 5.7 in the
context of deep learning where other regularization methods are presented as well. Also
note that the regularization parameter ⁄ is a first class example of a hyper-parameter
that one would like to calibrate during learning. This specific parameter serves as a good
lever for optimizing the bias and variance tradeo�. We now discuss the general topic of
hyper-parameter optimization.

Hyper-parameter Calibration and Cross Validation

As alluded to above, calibrating the model choice and the hyper-parameters while reusing the
test set for performance evaluation is bad practice since it pollutes the test set performance
estimator Etest of (2.26). For this reason it is common to further split the training data
Dtrain using one of several ways while experimenting with model configurations and hyper-
parameters. With such an approach Dtest is reserved only for final performance evaluation
before rolling out the model to production. Such use of the training data where some parts
of the data are used for training parameters and the other parts are used for checking
performance and tuning hyper-parameters is generally called cross validation.

There are multiple common cross validation techniques with many variants used in practice.
Here we present only two main approaches, the train-validate split approach and K-fold cross
validation. The train-validate split approach is common in situations where the total number
of datapoints n is large. The K-fold cross validation approach is useful when data is limited.

The train-validate split approach simply implies that the original data with n samples is
first split to training and testing as before and then the training data is further split into
two subsets where the first is (confusingly) again called the training set and the latter is the
validation set. Hence considering all of the available data D, with this approach,

D = Dtrain fi Dvalidate fi Dtest, where the unions are of disjoint sets.

18In practice we often do not regularize the intercept term and this requires adjusting the identity matrix
in X̃⁄.
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2.5 Generalization, Regularization, and Validation

When considering all of the data, this approach is also called the train-validate-test split
approach. If, for example, we use a 80-20 rule for both splits and assuming divisibility holds,
then ntest = 0.2 ◊ n, ntrain = 0.64 ◊ n and nvalidation = 0.16 ◊ n.

As an example, assume the model is fixed yet regularized with elastic net as presented above.
Hence the hyper-parameters in question are ⁄ = (⁄1, ⁄2) and the choice of these needs to be
tuned. The approach is then to evaluate the estimator on Dtrain over a grid of such hyper-
parameters, retraining from scratch for every ⁄. We then choose ⁄ú = argmax

⁄
Evalidation(⁄)

with
Evalidation(⁄) = 1

nvalidation

ÿ

(x,y)œDvalidation

P
!
‚y(x ; Dtrain, ⁄), y

"
, (2.37)

where we can see that the predictor ŷ depends on the hyper-parameter. With the optimal
⁄ú pair selected, the model with this ⁄ú is evaluated on the test set once via (2.26) before
being rolled out to production. Note that this approach has many variants used in practice.

... E(1)
validationk = 1

Validation Data Training Data

... E(2)
validationk = 2

.

.

.

... E(K)
validationk = K

Training Data Validation Data

Figure 2.11: K-fold cross validation. For each k = 1, . . . , K the data is split into training data
and validation data di�erently. This yields K estimates for performance and these estimates can be
averaged.

In case of limited observations a train-validate-test split may be too wasteful of data and an
alternative approach is K-fold cross validation as illustrated in Figure 2.11. This approach
may be used on all of the data D or only on the training data after a train-test split is
performed. Here for simplicity we apply it to some dataset D. The approach is useful both
for model selection, hyper-parameter optimization, and performance evaluation.

The value K of this approach which determines the number of data chunks or repetitions is
a static configuration parameter with a typical value being K = 5 or K = 10. The approach
is to split D into K equally sized data chunks each denoted D

k with,

D = D
1

fi D
2

fi . . . fi D
K , where again the unions are of disjoint sets.

Then for each k = 1, . . . , K we fix a training set to be composed of all of the observations
except for D

k and the validation set (may also be called a test set) to be D
k. That is,
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2 Principles of Machine Learning - DRAFT

denoting set di�erence with ‘\’ we set,

D
(k)
train = D \ D

k, and D
(k)
validation = D

k. for k = 1, . . . , K.

We may now retrain and evaluate the model separately for each data chunk k where each
time we use D

(k)
train as the training data and D

(k)
validation as the validation (or testing) data.

That is if for example K = 10 and originally D has n observations then for each k we have
ntrain = 0.9 ◊ n and nvalidation = 0.1 ◊ n (again assuming n is properly divisible).

With the model trained separately for each repetition k, we can now estimate performance
via,

Ecv = 1
K

Kÿ

k=1
E(k)

validation, (2.38)

with,
E(k)

validation = 1
nvalidation

ÿ

(x,y)œD(k)

validation

P
!
‚y(k)(x ; D

(k)
train), y

"
,

where ‚y(k) is the predictor trained for repetition k.

Once again, if needed, hyper-parameter optimization may take place by treating Ecv as a
function of the hyper-parameter in question. Also, as mentioned above in situations where
the total number of observations is low and if not tweaking parameters then K-fold cross
validation may serve as an alternative approach to general performance evaluation using
a train-test split. Again as with the train-validate-test split approach, there are multiple
variations for K-fold cross validation with the exact method used in practice often depending
on the specific situation encountered.

2.6 A Taste of Unsupervised Learning
Now that we have explored key aspects of supervised learning in the sections above, let us
get a taste for the basics of unsupervised learning. In this context the data is unlabelled and
is denoted via D = {x(1), . . . , x(n)

}. Here we assume that each sample or observation x(j) is
a p dimensional vector of features in Euclidean space. Observe that there are no labels y(j).

We briefly introduce two popular unsupervised learning methods, one for clustering and
one for data reduction. These are respectively the K-means algorithm and the framework
of principal component analysis (PCA). In exploring PCA we also take a slightly deeper
look at the linear algebraic concept of singular value decomposition (SVD) already used
in Section 2.3 in the context of pseudo-inverse representation. Here we see how SVD has
applications to data compression, a notion sometimes used in more complex deep learning
models. Further reference to more advanced supervised learning methods are in the notes
and references at the end of the chapter.

K-means Clustering

The machine learning activity of clustering allows us to identify meaningful groups, or
clusters, among the data points and find representative centers of these clusters. The aim is
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2.6 A Taste of Unsupervised Learning

that the samples within each cluster are more closely related to one another than samples
from di�erent clusters.

Formally, for the dataset D, clustering is the act of associating a cluster ¸ with each
observation, where ¸ comes from a small finite set, {1, . . . , K}. That is, a clustering algorithm
works on the data D and outputs a function c(·) which maps individual data points to the
label values {1, . . . , K}. The clustered data (algorithm output) is then a collection of clusters
denoted via,

C¸ =
)

x(j)
| c(x(j)) = ¸, j œ {1, . . . , n}

*
, for ¸ = 1, . . . , K.

A clustering algorithm attempts to choose the clusters such that the elements of each C¸ are
as homogenous as possible.

The K-means algorithm is one very basic, yet powerful heuristic algorithm. With K-means,
as with several other types of clustering algorithms, we pre-specify a number K, determining
the number of clusters that we wish to find. Hence K may be treated as a hyper-parameter.
As the algorithm seeks the function c(·), or alternatively the partition C1, . . . , CK , it also
seeks representative centers (also known as centroids), of the clusters, denoted by J1, . . . , JK ,
each an element of Rp.

One may view the ideal aim of K-means as minimization of,

Clustering loss =
Kÿ

¸=1

ÿ

xœC¸

Îx ≠ J¸Î
2. (2.39)

Such a minimization is generally computationally intractable since it requires considering
all possible partitions of D into clusters. Yet it can be approximately minimized via the
K-means algorithm using a classic iterative approach. The K-means algorithm does this by
separating the problem into two sub-problems or sub-tasks called mean computation, and
labelling. We define these now.

Mean computation: Given c(·), or a clustering C1, . . . , CK where |C¸| denotes the number of
elements in cluster ¸, find J1, . . . , JK that minimizes (2.39) via,

J¸ = 1
|C¸|

ÿ

xœC¸

x, for ¸ = 1, . . . , K. (2.40)

Here each J¸ is the vector obtained via the element-wise average over all the vectors in C¸

where each of the p coordinates is averaged separately.

Labelling: Given, J1, . . . , JK and assuming these values are fixed, find c(·) that minimizes
(2.39) for every x œ D. This is done by setting,

c(x) = argmin
¸œ{1,...,K}

Îx ≠ J¸Î. (2.41)

That is, the label of each element is determined by the closest center in Euclidean space.
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Figure 2.12: Workflow of the K-means algorithm on synthetic data with K = 3. The left column
is the mean computation step and the right column is the labelling step. Each row is an iteration
and the algorithm converges after three iterations. Initialization is presented in the top left corner
and after three iterations the algorithm converges with the output presented in the bottom right
corner.

The K-means algorithm starts with randomly initialized19 centers J1, . . . , JK . A labelling
step is then executed and these initial random centers are then used to determine initial labels
according to (2.41). The algorithm then iterates over the mean computation step (2.40),
followed by the labelling step (2.41) and repeats the two steps one after the other. This is
done until no more changes are made to the labels and the means. Such an iteration generally
does not find the absolute minimum of the objective (2.39), however the approximation
found is often satisfactory.

In Figure 2.12 we illustrate the workflow of the algorithm on synthetic data where we choose
K = 3. The top left plot is the intilization with three random means represented by the
black circle, the red triangle, and the green cross. Then each row of Figure 2.12 represents
one iteration of the algorithm where the plots on the left column show the output of mean
computation (except for the first row which is initilization), and the plots on the right
column show the output of labelling.

19These may be randomly selected elements of D or some other random set of vectors.
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2.6 A Taste of Unsupervised Learning

Note that in practice when presented with data D, one typically first standadizes the data
as presented in Section 2.1. Then the process of selecting the hyper-parameter K which is
external to the K-means algorithm is carried out. One way to do so is to run K-means for
increasing values of K and seek a knee point or elbow when plotting (2.39) as a function of
K. As K increases the objective (2.39) generally decreases, however beyond a certain K the
value of adding further clusters quickly diminishes. In some cases, such as the visual pixel
segmentation we present below, visual subjective measures can be used to find the most
appropriate K.

Image Segmentation with K-means

We have already briefly discussed image segmentation in Section 1.1; see Figure 1.2 in that
section. As discussed, the goal of image segmentation is to label each pixel of an image with
a unique class from a finite number of classes. In Chapter 6 we briefly describe a supervised
approach called semantic image segmentation which uses labeled data, namely class masks
in addition to the image for training. Nevertheless, in the absence of such information one
may still carry out unsupervised image segmentation. One way to carry out this task is to
use the K-means clustering algorithm where each pixel of the image is considered a point in
D and the dimension of each point is typically p = 3 (red, green, and blue) for color images.
This can produce impressive image segmentation without any other information except for
the image.

Figure 2.13 presents the segmentation of a color image where K-means is used for grouping
the pixels into K di�erent clusters. This color image in Figure 2.13 (a) is a n = 640 ◊ 640 =
409, 600 pixel color image (p = 3). The segmentation consists of running the K-means
algorithm which groups similar pixels based on their attributes and assigns the attributes
of the corresponding cluster center to the pixel in the image. Figure 2.13 (b) presents the
result of the segmentation using K = 6 and Figure 2.13 (c) does so with K = 2.

(a) (b) (c)

Figure 2.13: Unsupervised image segmentation using K-means. (a) Original image. (b) K = 6. (c)
K=2.

Matrices in Unsupervised Learning

We often organize the data D = {x(1), . . . , x(n)
} in the data matrix XD, similar to the design

matrix (2.10) by stacking each observation vector x(j) in a separate row. The di�erence
between the design matrix and XD is that the latter does not have a first column of 1s.
Thus XD is an n ◊ p matrix where the ith column has the data samples for feature i.
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2 Principles of Machine Learning - DRAFT

It is useful to de-mean the data by defining the centered data matrix,

X = XD ≠ 1x€, (2.42)

where we (re)use the notation X for the matrix previously used for the design matrix and
where 1 is a column vector of 1s of length p. In the centering process, the p dimensional
vector x has coordinates xi which are sample means of the features as defined in (2.1). That
is, for each column (feature) in XD we subtract the mean of the feature. Thus the new n ◊ p
matrix X has features that each have a sample mean of 0.

An important matrix for such data is the p ◊ p sample covariance matrix,20

S = 1
n

X€X. (2.43)

Written in scalar form, the (i, j)th element of the symmetric matrix S is,

Si,j = 1
n

nÿ

k=1
(x(k)

i
≠ xi)(x(k)

j
≠ xj).

and it estimates the covariance between feature i and feature j. On the diagonal of S where
i = j, Si,i equals the sample variance s2

i
of (2.1). The o� diagonal entries account for the

measure and direction of linear dependence between features.

We note that the sample covariance matrix can be further normalized to a sample correlation
matrix by dividing each (i, j)th entry by the product of the sample standard deviations, sisj .
Sample correlation matrices are important for multivariate descriptive statistics, yet we do
not use them explicitly now. Our focus is rather on PCA which we introduce in terms of the
de-meaned data matrix X and the sample covariance matrix S.

Principal Component Analysis

It is often the case that not all p dimensions of the data are equally useful. This is especially
the case in the presence of high dimensional data (large p). Moreover, many features may
be either completely redundant or uninformative. These cases are referred to as correlated
features or noise features respectively. In such cases and others, principal component analysis
(PCA) is often employed. It is a well-known and widely used dimensionality reduction
technique applicable to a wide variety of applications such as data compression, feature
extraction, and visualization.

The basic idea of PCA is to project each point of D which has many correlated coordinates
onto fewer coordinates, called principal components, which are uncorrelated. This is done
while still retaining most of the variability present in the data. In this setting, PCA o�ers a
low-dimensional representation of the features that attempts to capture the most important
information from the data. The principal components found via PCA are a new reduced
set of features, indexed by i = 1, . . . , m where m < p is some specified lower dimension. For
visualization we often take m = 2 or m = 3. In other applications, such as for example the
integration of PCA as part of other machine learning procedures, m is often calibrated as a
hyper-parameter.

20In a statistical context one often uses n ≠ 1 in the denominator instead of n. For non-small n this
distinction is insignificant. See a similar comment in relation to (2.1)

66



i
i

i
i

i
i

i
i

2.6 A Taste of Unsupervised Learning

As input, PCA uses the de-meaned data from the centered data matrix X of (2.42) where
we denote by x(i) the ith column of X (corresponding to a vector of feature i for all n
observations). PCA uses a linear combination of these columns to arrive at the vectors of
the new features x̃(1), . . . , x̃(m). This can simply represented as

x̃(i) = vi,1

S

U
|

x(1)
|

T

V + vi,2

S

U
|

x(2)
|

T

V + . . . + vi,p

S

U
|

x(p)
|

T

V for i = 1, . . . , m,

where each new n dimensional vector, x̃(i), is a linear combination of the original features.
The coe�cients of this linear combination can be organized in the vector vi = (vi,1, . . . , vi,p)
which is called the loading vector for i. Thus x̃(i) = Xvi. This can also be represented for all
the reduced features and loading vectors together via,

S

U
| |

x̃(1) . . . x̃(m)
| |

T

V

¸ ˚˙ ˝
ÂXn◊m

Reduced data

=

S

U
| |

x(1) . . . . . . x(p)
| |

T

V

¸ ˚˙ ˝
Xn◊p

Original de-meaned data

◊

S

WWWWU

----

----
v1 . . . vm----

----

T

XXXXV

¸ ˚˙ ˝
ÂVp◊m

Matrix of loading vectors

. (2.44)

It turns out the a very useful way to represent the loading vectors v1, . . . , vm is by normed
eigenvectors associated with eigenvalues of the sample covariance matrix S as in (2.43).
Specifically, since S is symmetric and positive semidefinite, the eigenvalues of S are real and
non-negative, a fact which allows us to order them via ⁄1 Ø ⁄2 Ø . . . Ø ⁄p Ø 0. We then
pick the loading vector vi to be a normed eigenvector associated with ⁄i, namely,

Svi = ⁄ivi, (2.45)

while keeping in mind that the first loading vector is associated with the highest eigenvalue;
the second is associated with the second highest eigenvalue; and so forth. The symmetry of
S also means that its eigenvectors are orthogonal and hence ÂV is a matrix with orthonormal
columns. In this setting we assume that at least the first m eigenvalues are strictly positive,
namely ⁄m > 0.

In the subsection below we derive the main result to show why this choice of loading vectors
based on eigenvectors is attractive. At this point let us consider a numerical example.

We return to the Wisconsin breast cancer data used in Section 2.2 where p = 30 and
n = 569. To visualize this data using PCA we set m = 2 and compute the first two loading
vectors from the 30 ◊ 2 matrix ÂV using standard numerical procedures for eigenvalues and
eigenvectors. Then by multiplying the 569 ◊ 30 demeaned data matrix X by ÂV as in (2.44)
we get the 569 ◊ 2 matrix ÂX of principal components. We then plot each row which is 2
dimensional in Figure 2.14 (a).

On their own, the two dimensional points in Figure 2.14 (a) may not be insightful. After all
the principal components coordinates pc1 and pc2 do not have any physical meaning in this
context. Nevertheless, if we consider Figure 2.14 (b) where we frame this as a supervised
learning problem and color the points based on the labels benign vs. malignant, a useful
pattern emerges. There is quite a clear separation between the two classes and hence there is
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Figure 2.14: Breast tumor data samples projected on the two first principal component from
the PCA. (a) Unlabeled data. (b) Once adding the label to each sample a pattern and separation
between benign vs. malignant appears.

potential to classify points by separating the region in the principal components plane. We
do not discuss concrete examples of constructing a classifier in this case. We rather point
out that the data following a PCA transformation with reduced dimension m < p, can often
be used as input to a supervised learning algorithm.

Derivation of PCA

The PCA framework tries to project the data in the directions with maximum variance.
Returning to (2.44), since x̃(i) = Xvi we can formulate this by maximizing the sample
variance of the components of x̃(i). Keeping in mind that x̃(i) is a 0 mean vector, its sample
variance using (2.1), is simply x̃€

(i)x̃(i)/n. Hence substituting x̃(i) = Xvi, we have,

Sample variance of component i = 1
n

v€
i

X€Xvi = v€
i

Svi,

where S is the sample covariance of the data as in (2.43). Thus in searching for the first
loading vector v1 we have the optimization problem,

max
vœRp

v€Sv, subject to ÎvÎ = 1. (2.46)

Note the constraint which seeks a normalized direction v with ÎvÎ = 1 which is equivalent
to v€v = 1. This representation allows us to use Lagrange multiplier techniques where we
convert this constrained problem to an unconstrained quadratic problem. The objective is
then,

max
v, ⁄

v€Sv + ⁄
!
1 ≠ v€v

"
or max

v, ⁄

v€Sv ≠ v€⁄v + ⁄, (2.47)

with the Lagrange multiplier ⁄ and the constraint 1 ≠ v€v = 0. Now taking derivatives
with respect to the vector v (see also Appendix A) we obtain Sv ≠ ⁄v. Thus the first-order
conditions in terms of v reduce to the eigenvalue problem Sv = ⁄v. This means that any
eigenvector v of S adheres to the first-order conditions for the optimization problem (2.46).

68



i
i

i
i

i
i

i
i

2.6 A Taste of Unsupervised Learning

By multiplying the eigenvalue equation by v€ we get v€Sv ≠ v€⁄v = 0. As apparent
from the representation on the right hand side of (2.47), this means that any eigenvector
yields a maximization objective which is equal to the corresponding eigenvalue ⁄. Hence
the optimization problem is solved by choosing the maximal eigenvalue ⁄1 with v being an
associated normalized eigenvector, v1 as in (2.45).

The subsequent directions vi for i = 2, . . . , m are chosen by maximizing the variance of
new linear combinations which are orthogonal to previous ones. That is, the directions
capture the part of variance which has not been previously captured. It can be shown that
a normalized eigenvector which matches the second eigenvalue, v2 maximizes the variance
once the direction of v1 is removed. This then continues for i = 3, . . . , m and in summary
principal components are determined via (2.45).

PCA Through SVD

We have already used the singular value decomposition (SVD) in Section 2.3 in the context
of the Moore-Penrose pseudo-inverse. We now further revisit the construction of SVD from
linear algebra and see the relationship between SVD and PCA.

Any n ◊ p dimensional matrix X of rank r can be represented as

X = U�V € =
rÿ

i=1
”i ui v€

i
, with � = diag(”1, . . . , ”r), and ”i > 0. (2.48)

Here the n ◊ r matrix U and the p ◊ r matrix V are both with orthonormal columns denoted
ui and vi respectively for i = 1, . . . , r. These columns are called the left and right singular
vectors respectively. The values ”i in the r ◊ r diagonal matrix � are called singular values
and are ordered as ”1 Ø ”2 Ø · · · Ø ”r > 0. Note that this representation of the SVD di�ers
from the one employed near (2.17) in Section 2.3 where U and V were taken as square
matrices and � was not necessarily square. The form used in Section 2.3 is sometimes called
the full SVD and the form we present here is called the reduced SVD.

Consider now X again as the de-meaned data matrix (2.42). Now using its SVD representation
in the sample covariance (2.43) we obtain

S = 1
n

V �€U€
¸ ˚˙ ˝

X€

U�V €
¸ ˚˙ ˝

X

= 1
n

V �2V €, with �2 = diag(”2
1 , . . . , ”2

r
).

Here the fact that U has orthonormal columns implies U€U is the r ◊ r identity matrix and
hence it cancels out. Hence,

S =
rÿ

i=1

”2
i

n
vi v€

i
. (2.49)

We can now compare to the eigenvector based representation of PCA where ÂV is the matrix
of PCA loading vectors as in (2.44). Take m = r and denote by � the diagonal matrix with
diagonal entries as the eigenvalues of S in decreasing order ⁄1 Ø . . . Ø ⁄r > 0. Now using
(2.45) we have the spectral decomposition of S,

S = ÂV €�ÂV =
rÿ

i=1
⁄i vi v€

i
. (2.50)
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2 Principles of Machine Learning - DRAFT

We now compare (2.49) and (2.50) and see that with ⁄i = ”2
i
/n the loading vectors in (2.50)

are the right singular vectors in (2.49). That is, ÂV = V .

Further, to obtain the data matrix of principal components, ÂX of (2.44) we set ÂX = XV .
Now using the SVD representation of X, (2.48) and assuming m = r, PCA can be represented
as,

ÂX = U�V €
¸ ˚˙ ˝

X

V = U� =

S

U
| | |

”1u1 ”2u2 . . . ”rur

| | |

T

V . (2.51)

That is, each column of the reduced data matrix ÂX is a left singular vector ui stretched by
the singular value ”i. Further, for m < r we only take the first m columns.

With these relationships between PCA and SVD, numerical methods for computing the
SVD decomposition of X can be used for PCA. Indeed in practice, e�cient and numerically
robust computational methods for SVD are employed for PCA.

SVD for Compression

The singular value decomposition can also be viewed as a means for compressing any matrix
X. Specifically, consider the SVD representation in (2.48) with ”1 Ø ”2 Ø . . . Ø ”r. Then a
rank m < r approximation of X is,

‚X =
mÿ

i=1
”i ui v€

i
¥ X, where X ≠ ‚X =

rÿ

i=m+1
”i ui v€

i
. (2.52)

The rank of ‚X is m and since one often uses m significantly smaller than r, this is called a
low rank approximation. For small enough ”m+1 the approximation error is negligible since
the summation of rank one matrices ”i ui v€

i
for i = m + 1, . . . , r is small. Observe that the

number of values used in this representation of ‚X is m ◊ (1 + n + p) and for small m this
number is generally much smaller than n ◊ p which is the number of values in X. Hence
this may viewed as a compression method.

The usefulness of such low rank approximations is validated by a theoretical result called the
Eckart-Young-Mirsky theorem. Here we consider the approximation-error matrix X ≠ ‚X and
we seek to have the best rank m approximation in terms of minimization of ÎX ≠ ‚XÎ. The
theorem works for several types of matrix norms, yet here let us focus on the Frobenious
norm21 denoted ÎAÎF for any matrix A. We now have for the Frobenious norm,

min
‚X of rank m

...X ≠ ‚X
...

2

F

=

.....X ≠

mÿ

i=1
”i uiv

€
i

.....

2

F

=
rÿ

i=m+1
”2

i
. (2.53)

Singular value decomposition based matrix approximations such as (2.52) are useful in
multiple domains including improvement of neural network model size. We do not discuss
these topics specifically in this book. Instead, consider a simple visual example with a
353 ◊ 469 monochrome (grayscale) image appearing at the bottom right of Figure 2.15; this
is X. Then the other images in Figure 2.15 are ‚X with m = 10, m = 30, and m = 50. As
is evident, the m = 50 approximation appears close to the original image. The main plot

21This is the square root of the sum of the squared elements of the matrix.
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2.6 A Taste of Unsupervised Learning

Figure 2.15: SVD for data compression: The original image is presented based on compression
with m = 10 singular values, m = 30 singular values, and m = 50 singular values. The images are
presented in terms of the relative approximation error based on the Frobenious norm.

in the figure is the relative approximation error as given by the right hand side of (2.53)
divided by the sum of all singular values squared.

Note that the original image uses 353◊469 = 165, 557 values while the m = 50 approximation
only uses 50 ◊ (1 + 353 + 469) = 41, 150 values. That is the approximation yields ‚X which is
compressed to about 25% of the size of X and looks very similar.

Note that variants of the types of plots as in Figure 2.15 are also common when carrying
out PCA. In that context the plot is called a scree plot and it presents the percentage of
variance explained by the principal components.
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2 Principles of Machine Learning - DRAFT

Notes and References
One does not need to master all other branches of machine learning to understand deep learning,
nevertheless getting a taste for key elements of the field is useful. Beyond the basics that we presented
in this chapter, one may consult several general machine learning texts. We recommend [240] for a
comprehensive mathematical account of practical machine learning and we recommend the more
classic [39] as an additional resource. Further, the book [299] provides a probabilistic approach.
Focusing on linear algebra, the introductory book [56] is a good introduction to foundations such as
K-means, least squares, and ridge regression. Further, [391] provides a richer context covering PCA,
SVD, and many aspects of matrix algebra appearing in machine learning. Finally for a short read
which provides an overview of many practical aspects of machine learning, see [68]. An additional
recommended reference is [263].

The worlds of machine learning and statistical inference are intertwined and methods developed
in one field are often used in the other field and vice versa. For those with expertise in one or
both of the fields it is quite easy to spot the di�erences between the approaches, however for those
entering these worlds afresh it may be helpful to read the survey paper “Statistical modeling: The
two cultures” by Leo Breiman, [61]. On that note, to get a feel for many statistical aspects of linear
regression, see, e.g., [296] or one of many other statistical books. Note that [296] is also a good
reference for understanding interaction terms, a concept that we mentioned in the chapter and did
not cover. A general text that integrates methodology and algorithms with statistical inference and
machine learning together with speculations of future directions is [115].

Throughout this chapter we have made reference to several aspects of statistics or machine learning
that are not studied further in this book. Here are some references for each. In general, a good
reference for likelihood based inference is [31]. Specifically Akaike information criterion (AIC),
introduced in [7], and the Bayesian information criterion (BIC) are surveyed in [432]. A general
class of models also appearing in the next chapter is generalized linear models (GLMs); these first
appeared in [304] and a good contemporary applied reference is [121]. Other models are general
additive models (GAMs) which extend generalized linear models in which some predictor variables
are modelled by smooth functions; see [168]. In terms of non-linear regression the LOESS method is
a generalization of moving average and polynomial regression, see [88]. Further, Nadaraya-Watson
kernel regression is a non-parametric regression method in which a kernel function is exploited;
see [378].

We have covered the basics of decision theory via binary classification however there are many more
studies for these aspects. See the comprehensive survey [118] on metrics for binary classification as
well as [158]. For a discussion of di�erent uses of receiver operating curves and di�erent approaches
for them see [58] and [315]. The origins of the F1 score can be attributed to Cornelis Joost van
Rijsbergen who introduced the e�ectiveness function of which F1 score is a special case; see [408].
The SMOTE method for dealing with unbalanced data is from [75]. See also the surveys [153], [211],
and [348].

We briefly mentioned the di�erences between discriminative and generative learning. More on the
topic is in chapter 9 of [299] together with a treatment of the naive Bayes classifier and linear
discriminant analysis (LDA). The area of support vector machines became extremely popular in the
world of machine learning with their height of popularity during the 1990’s and the decade that
followed. A complete treatment of these methods is in [240] together with associated ideas of kernel
methods. Specific to this area is the concept of VC dimension (standing for Vapnik–Chervonenkis)
which we did not cover here; see [409].

Decision trees are also very popular machine learning techniques; see chapter 8 of [240] for an
overview. Within the study of machine learning, generic methods of boosting and bagging are
prominent in the context of decision trees. Specifically see [366] and [59]. The random forest
algorithm is one such method that has been hailed the most usable ad-hoc generic method when
there is not further information about the problem; see [60]. Gradient boosting has become very
popular due to a software package called XGBoost; see [77]. The K-nearest neighbours classification
algorithm that we mention is often used as an introductory example. See for example Section 2.3
of [166].

The origins of least squares fitting are from the turn of the 19’th century, initially with applications
to astronomy. The first least squares publication is typically attributed to an 1809 paper by Gauss
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2.6 A Taste of Unsupervised Learning

[132] although an earlier 1805 publication by Legendre publicized the concept first. An interesting
historical investigation into “who invented least squares” is in [389]. Since then, least squares methods
have become some of the most prominent tools in applied mathematics. The Moore-Penrose pseudo
inverse was independently described in [297], [40], and [328]. Singular value decomposition (SVD)
has origins in di�erential geometry with the first linear algebra publication typically associated
with the 1936 Eckart Young paper [114]. To the best our knowledge the first association between
SVD and least squares is in [139]. The survey [105] may also be of interest as it contrasts di�erent
numerical methods for least squares.

Aspects of multi-collinearity are treated in many statistical contexts, see for example [281]. Using
regression with other methods such as absolute error loss (robustness) is covered in [302] and for a
reference on the Huber error loss see [197]. See also [160] for a discussion on dealing with categorical
input features by conversion to numbers.

The origins of gradient descent are attributed to Cauchy from 1847 with [72], way before the
invention of any digital electronic computer; see [253] for an historical account. The analysis of
the loss landscape in machine learning has been studied multiple times, see for example [279] for a
survey, and [284] for theoretical result in a high dimensional context.22

We have only touched the tip of the iceberg in terms of model selection. See [390] for a survey as
well as the book [87]. There are also recent developments such as [26] dealing with other approaches
for balancing underfitting and overfitting or bias and variance. In general, model selection is still
a very active open avenue of research. Our discussion surrounding the generalization gap follows
similar lines to [263]. Our example in Figure 2.10 is inspired by a similar example in [39].

For an excellent reference dealing with the LASSO method see [167]. The original Tikhonov
regularization (ridge regression) technique appeared in 1943 in [401] yet it is believed to have been
invented in parallel in other contexts as well. Elastic net models are more of a speciality; see [453]
and also relations to support vector machines in [452]. Generalizations, variants, and discussion of
issues arising with K-fold cross validation are in [424] and [232]. See also [215] and [62] for recent
developments as well as [443] for stratified cross-validation and variants.

The accepted first reference for K-means clustering is [277] from 1967 although the method was
known prior. An applied book to understand the main concept and algorithms for cluster analysis is
[226]. A recent comprehensive survey about clustering adding to what we presented here is in [120].
Further clustering approaches include hierarchical clustering, see [300]. See also an older general
survey in [208]. Principal component analysis was first proposed by Pearson in [326] with initial
ideas also attributed to Hotelling in [189]. A substantial book on the topic is [212]. Relationships to
SVD are well explained in [391] and the first appearance of the Eckart-Young-Mirsky theorem for
SVD was in [114] by Eckart and Young. It was further independently extended by Mirsky in [292].
One popular e�cient method for numerical computation of SVD is the so called Golub-Reinsch
algorithm first introduced in [140]. A further overview of additional SVD algorithms is in [89].

22See also https://losslandscape.com/ for a visual presentation of di�erent loss landscapes.
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