
i
i

i
i

i
i

i
i

Mathematical Engineering
of Deep Learning

Book Draft

Benoit Liquet, Sarat Moka and Yoni Nazarathy

February 28, 2024

i
i

i
i

i
i

i
i

Contents

Preface - DRAFT 3

1 Introduction - DRAFT 1
1.1 The Age of Deep Learning . 1
1.2 A Taste of Tasks and Architectures . 7
1.3 Key Ingredients of Deep Learning . 12
1.4 DATA, Data, data! . 17
1.5 Deep Learning as a Mathematical Engineering Discipline 20
1.6 Notation and Mathematical Background . 23
Notes and References . 25

2 Principles of Machine Learning - DRAFT 27
2.1 Key Activities of Machine Learning . 27
2.2 Supervised Learning . 32
2.3 Linear Models at Our Core . 39
2.4 Iterative Optimization Based Learning . 48
2.5 Generalization, Regularization, and Validation 52
2.6 A Taste of Unsupervised Learning . 62
Notes and References . 72

3 Simple Neural Networks - DRAFT 75
3.1 Logistic Regression in Statistics . 75
3.2 Logistic Regression as a Shallow Neural Network 82
3.3 Multi-class Problems with Softmax . 86
3.4 Beyond Linear Decision Boundaries . 95
3.5 Shallow Autoencoders . 99
Notes and References . 111

4 Optimization Algorithms - DRAFT 113
4.1 Formulation of Optimization . 113
4.2 Optimization in the Context of Deep Learning 120
4.3 Adaptive Optimization with ADAM . 128
4.4 Automatic Di�erentiation . 135
4.5 Additional Techniques for First-Order Methods 143
4.6 Concepts of Second-Order Methods . 152
Notes and References . 164

5 Feedforward Deep Networks - DRAFT 167
5.1 The General Fully Connected Architecture 167
5.2 The Expressive Power of Neural Networks 173
5.3 Activation Function Alternatives . 180
5.4 The Backpropagation Algorithm . 184
5.5 Weight Initialization . 192

7

i
i

i
i

i
i

i
i

Contents

5.6 Batch Normalization . 194
5.7 Mitigating Overfitting with Dropout and Regularization 197
Notes and References . 203

6 Convolutional Neural Networks - DRAFT 205
6.1 Overview of Convolutional Neural Networks 205
6.2 The Convolution Operation . 209
6.3 Building a Convolutional Layer . 216
6.4 Building a Convolutional Neural Network 226
6.5 Inception, ResNets, and Other Landmark Architectures 236
6.6 Beyond Classification . 240
Notes and References . 247

7 Sequence Models - DRAFT 249
7.1 Overview of Models and Activities for Sequence Data 249
7.2 Basic Recurrent Neural Networks . 255
7.3 Generalizations and Modifications to RNNs 265
7.4 Encoders Decoders and the Attention Mechanism 271
7.5 Transformers . 279
Notes and References . 294

8 Specialized Architectures and Paradigms - DRAFT 297
8.1 Generative Modelling Principles . 297
8.2 Di�usion Models . 306
8.3 Generative Adversarial Networks . 315
8.4 Reinforcement Learning . 328
8.5 Graph Neural Networks . 338
Notes and References . 353

Epilogue - DRAFT 355

A Some Multivariable Calculus - DRAFT 357
A.1 Vectors and Functions in Rn . 357
A.2 Derivatives . 359
A.3 The Multivariable Chain Rule . 362
A.4 Taylor’s Theorem . 364

B Cross Entropy and Other Expectations with Logarithms - DRAFT 367
B.1 Divergences and Entropies . 367
B.2 Computations for Multivariate Normal Distributions 369

Bibliography 399

Index 401

8

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks -
DRAFT

While o�ering generality and versatility, the fully connected feedforward neural networks
described in the previous chapter are often too general to be e�ective on their own right. For
many applications, such dense architectures can have too many parameters and are not able
to generalize well. This is especially the case when considering vision, sound, or similar data
for which the spatial orientation of pixels or features is a key defining attribute. For such
data, learned rules associated with certain features often need to be repeated systematically.
Convolutional neural networks o�er an ability to do so by training convolutional filters that
can be applied in a spatially homogenous manner. Such networks yield a significant reduction
in the number of trained parameters. Understanding convolutional neural networks requires a
grasp of the convolution operation and how it is incorporated in a deep learning architecture
together with the concept of channels and additional operations such as max-pooling. This
chapter covers the main details of such convolutional neural networks as well as specific
convolutional architectures that have by now become standard. As the main application of
convolutional neural networks is images, we also outline key tasks of deep learning in image
processing applications.

We start the chapter with an overview in Section 6.1 where we introduce general concepts
of convolutional neural networks. We first touch filtering in signal processing and then
consider a high level view of the VGG19 network as a concrete example. In Section 6.2 we
study basics of the convolution operation both in one dimension as well as more generally.
Towards that end we relate convolutions to systems theory, to probability distributions,
and to multiplication of polynomials. In Section 6.3 we focus on a single convolutional
layer. First we motivate such a layer and then focus on details such as padding, stride, and
dilation. We then introduce the concept of channels and the way that volume convolutions are
carried out. In Section 6.4 we put the pieces together and discuss how multiple convolutional
layers, and other layers such as max-pooling and fully connected layers, are combined into a
network model. Here again, the VGG19 serves as a complete example. In Section 6.5 we
describe common landmark architectures and key ideas of convolutional neural networks.
The ideas and architectures surveyed include inception networks, ResNets, as well as ways for
interpreting the meaning of internal features of the networks. We close with Section 6.6 where
we discuss the various tasks that one may consider for vision problems beyond classification.
These tasks include object localization, face identification, segmentation models, and others.

6.1 Overview of Convolutional Neural Networks
Convolutional neural networks (CNNs) are designed to handle grid-structured data, such as
image data, where there is a strong local dependency between the neighboring items of the
grid. For instance, in an image, there is a high chance that adjacent pixels carry similar
properties. Such a grid based structure is also present in many sequential data formats such

205

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

as text and sound, where a strong correlation exists among adjacent items. Even though this
chapter as well as most of the literature on convolutional neural networks focuses on image
data, these networks are suitable for working with any temporal, spatial, or spatiotemporal
data.

Convolutional neural networks are computationally more e�cient than the fully connected
neural networks studied in Chapter 5 and are more suitable for grid-structured data. This
is primarily because convolutional neural networks require fewer parameters than fully
connected networks, with a parameter structure focused on feature (pixel) locality. For
instance, consider a classification task for detecting cats within a dataset consisting of images
of di�erent animals. Such data exhibits two key properties:

Translation invariance: The classification decision for each image is independent of the
position of the animal on the image. A cat is a cat irrespective of whether it appears
at the top or at the bottom of an image.

Locality: The classification decision does not really depend on a pixel that is far away
from the animal on the image. A cat is still a cat irrespective of whether far away
pixels correspond to a building or a tree.

Ideally, we want our neural network to take advantage of these two properties. When using
the fully connected neural networks of Chapter 5 for images, the first step is to convert each
image to an input features vector. By doing this we may lose both the above mentioned
structural properties of images. On the other hand, convolutional neural networks retain
and exploit these properties while generally using fewer parameters.

Filtering

To understand convolutional neural networks it is helpful to have a basic understanding
of filtering, a well-established field in signal processing, and particularly in the subfields
of image processing and computer vision. Filtering is a method or process that removes
certain unwanted information from a signal or an image, or alternatively enhances it by
accentuating certain information. Taking image processing as an example domain, filtering
applies mathematical operations on input images, with the most common operation being
the convolution. A convolution can be viewed as an operation between two mathematical
objects, such as two matrices or two functions, where one object represents an image and
the other a filter. All of Section 6.2 is devoted to a basic introduction of convolutions.

In the field of signal processing, each filter is often custom designed depending on the specific
task at hand. For example, a popular filter, called the Sobel filter, is useful for the task of edge
detection. Figure 6.1 illustrates filtering for extracting edges in an image using two Sobel
filters applied on an input image appearing in (a). In (b) we detect the vertical edges and in
(c) we detect the horizontal edges. By adding the outputs of these two filtering operations,
we get the final image shown in (d) which captures most of the vertical and horizontal edge
information. More details on edge detection using Sobel filters are in Section 6.2. Beyond
edge detection, there are several other tasks that traditional image processing filters can
o�er, including blurring, smoothing, sharpening, and accentuating images, and each of these
is achieved using a custom designed filter.

Convolutional neural networks build upon the classic ideas of filtering using convolutional
layers. Each convolutional layer is made up of one or more filters, also known as kernels,

206

i
i

i
i

i
i

i
i

6.1 Overview of Convolutional Neural Networks

each of which aims to extract a particular feature of the input to the layer. Early layers
of the network usually aim to detect lower-level features such as edge detection while the
latter layers focus on higher-level features such as identifying cats, dogs, cars, etc. The final
hidden layer, ultimately, provides a summary of the input image. Then for example, when
considering classification tasks, the final hidden layer is used to classify the input image into
di�erent classes.

(a) (b)

(c) (d)

Figure 6.1: Edge detection using the Sobel filter.

The filtering operation at each layer in a convolutional neural network is similar to classical
filtering illustrated with edge detection above. However, unlike classical filtering, filters in
the convolutional neural network are learned rather than designed. A training dataset is
used for learning the filters before using the network for image processing. Here, learning a
filter means learning the entries of the matrix that represents the filter, and these entries are
called weights as the filters play a similar role to the weight matrices of a fully connected
neural networks, covered in the previous chapter.

An Example: VGG19

To get a feel for convolutional neural networks let us consider the task of classifying color
images. As an example assume input images are of dimension 3 ◊ 224 ◊ 224, where 3 is the
number of channels (red, green, and blue), and 224◊224 specifies the pixel dimensions. Hence
the number of input features is p = 3 ◊ 224 ◊ 224 ¥ 150, 000. Assume we wish to use such
networks for classification of K = 1, 000 possible classes. If we are to use a fully connected
network with no hidden layer, as in the multinomial regression model of Section 3.3, we

207

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

already use p ◊ K + K learned parameters. This is an order of 150 million parameters.
Further, deeper networks that extend the multinomial regression model by adding more
layers as in Chapter 5, generally require even more parameters. Yet limiting the number of
parameters in any machine learning model is important since it bounds computational time,
limits usage of computational resources, and reduces overfitting while respecting training
data limitations. We now explore what can be done with a convolutional neural network for
such a task using approximately the same number of parameters.

The 3 ◊ 224 ◊ 224 input dimensions agree with inputs of the VGG191 model, first touched
upon in Section 1.1. The VGG19 model has about 144 million parameters (similar to the
dense p ◊ K + K multinomial regression case). However, in contrast to the dense single layer
model, VGG19 spans 19 trainable layers! This depth makes the model much more expressive;
see Section 5.2 for a discussion on the benefits of depth in networks. Indeed, convolutional
neural networks such as VGG19 are specifically suited for image tasks and have a relatively
low number of parameters which allow them to be deep.

x

3⇥ 224⇥ 224 64⇥ 224⇥ 224

64⇥ 112⇥ 112

128⇥ 112⇥ 112

128⇥ 56⇥ 56

256⇥ 56⇥ 56

256⇥ 28⇥ 28

Layer 12

512⇥ 28⇥ 28

512⇥ 14⇥ 14

512⇥ 14⇥ 14

512⇥ 7⇥ 7

ŷ1000

ŷ999

ŷ2

ŷ1

ŷ1000

ŷ999

ŷ2

ŷ1

ŷ1000

ŷ999

ŷ2

ŷ1

ŷ1000

ŷ999

ŷ2

ŷ1

ŷ1000

ŷ999

ŷ2

ŷ1

ŷ1000

ŷ999

ŷ2

ŷ1

4096 4096

1000

Figure 6.2: The VGG19 network architecture. An input x is a 3 ◊ 224 ◊ 224 color image. It is
processed through a series of convolutional layers followed by fully connected layers. The resulting
output, ŷ1, . . . , ŷ1000 is a vector of probabilities indicating the class of the image.

While Sections 6.2, 6.3, and 6.4, introduce the components of convolutional neural networks
in detail, at this point let us informally explore the VGG19 model illustrated in Figure 6.2.
Like the feedforward networks of Chapter 5, it is composed of layers where data flows
between layers down stream from the input x to the output ŷ. However, unlike feedforward
fully connected layers, most layers are not composed of a dense matrix multiplication as in
equation (5.2) of Chapter 5, but are rather made of filtering operations implemented via a
combination of convolutions and non-linear activation functions. Only the final layers are
dense layers.

The rectangular boxes in Figure 6.2 represent neurons, also known as internal features,
that are computed via the successive application of convolutional layers. Each such box,
is in a sense an image or a tensor, yet unlike the input with 3 channels, these internal
representations generally have a di�erent number of channels (also known as feature maps),

1VGG stands for Visual Geometry Group, the group at Oxford University that created the network.

208

i
i

i
i

i
i

i
i

6.2 The Convolution Operation

not directly corresponding to color values but rather to internal features. As an example
consider the layer ¸ = 12, pointed at with a red arrow in the figure. That layer has 512
channels each containing a 28 ◊ 28 pixel “image”.

The network also incorporates operations called max-pooling without learned parameters,
discussed in detail in Section 6.3. These operations are generally used to reduce dimensions
as data flows downstream in the network. Importantly, and quite characteristically of
convolutional networks, the VGG19 network starts with a succession of convolutional layers
with interleaved max-pooling operations, and towards the end, has dense layers that are
similar to the layers of feedforward networks of chapter 5.

6.2 The Convolution Operation
The convolution operation is a key component of convolutional neural networks. In this
section we study convolutions via various mathematical and engineering viewpoints. We
consider linear time invariant systems, probability distributions, multiplication of polynomials,
and the general representation of a convolution as a linear operation. We then consider
multi-dimensional convolutions and focus on an engineering filtering example, the Sobol
filter, used above in Figure 6.1.

A convolution can be viewed as an operation on two functions which creates a third function.
In finite domains, these functions may be represented as vectors, matrices, or tensors. We
begin the presentation by focusing on one dimensional convolutions. Suppose f, g : Z æ R
are two functions (or sequences) with discrete domains. Then the convolution between f
and g is defined as

(f ı g)(t) =
ÿ

·œZ
f(t ≠ ·)g(·), t œ Z. (6.1)

In other words, the convolution f ı g between f and g at a point t is obtained by taking
summation of the product of the two functions after one of them is flipped at the origin
and then shifted by t. The convolution is commutative, namely, (f ı g)(t) = (g ı f)(t). This
property can be easily observed via a change of variables in the summation of (6.1).

In case f and g have continuous domains, say f, g : R æ R, the convolution between f and
g is defined as

(f ı g)(t) =
⁄

R
f(t ≠ ·)g(·)d·, t œ R. (6.2)

In both the discrete convolution (6.1) and the continuous convolution (6.2) we assume that
the summation or integral, respectively, converges. In the context of deep learning we focus
on convolutions of vectors, matrices, and tensors, in which case (6.2) is used on a finite
domain and hence always converges. We now present a few viewpoints of one dimensional
convolutions before stepping up to multi-dimensional cases.

Convolutions in LTI Systems

To get a feel for the importance of convolutions we consider Linear Time Invariant (LTI)
systems. These objects are key in classic control theory and signal processing, and they have
influenced machine learning, eventually leading to the development of convolutional neural

209

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

networks. An LTI system, denoted here by L(·), maps an input signal x = {x(t) : t œ R or Z}

to an output signal y via y = L (x). LTI systems satisfy the linearity and time invariance
properties:

Linearity: For any two input signals x1(t) and x2(t) and scalars –1 and –2,

L (–1x1 + –2x2) = –1L (x1) + –2L (x2) .

Time invariance: When the shifted (delayed by ·) signal x̃(t) = x(t ≠ ·) is given as
an input, then the corresponding output signal ỹ = L (x̃) is ỹ(t) = y(t ≠ ·), where
y = L (x). Namely, the output of the shifted input is the shifted output of the original
input.

An important input signal to consider for any LTI system is the impulse signal. In the
discrete time case, the impulse signal, denoted by ”(t), takes 1 at t = 0 and 0 for any other
t, that is,

”(t) =
I

1, if t = 0,

0, otherwise.

Now, the output of the system when the input is the impulse signal is called the impulse
response and is denoted here as w = L (”). It turns out that the operation of any LTI system
on an any input signal x is equivalent to a convolution of x with the impulse response w.
That is, L (x) = w ı x.

To see this, using this impulse function, any signal x = {x(t) : t œ Z} can be represented as,

x(t) =
Œÿ

·=≠Œ
x(·)”(t ≠ ·),

where observe that ”(t ≠ ·) takes 1 at t = · and 0 otherwise. Consequently, y(t) is equal to,

L(x)(t) =
Œÿ

·=≠Œ
x(·)L (”(t ≠ ·)) =

Œÿ

·=≠Œ
x(·)L(”)(t ≠ ·) =

Œÿ

·=≠Œ
x(·)w(t ≠ ·) = (w ı x)(t),

where the first and second equalities respectively follow from the linearity and the time
invariance properties of LTI systems.

A similar result exists for continuous time LTI systems, where the impulse response is the
output of the system when the input is a generalized impulse function, ”(t), called the Dirac
delta function.2 Generally, convolutional neural networks do not rely on such continuous time
representations. Nevertheless, we mention it here for completeness because most treatments
of LTI systems use the delta function.

2The Dirac delta function is not an R æ R function in the standard sense but is rather a generalized
function. It is a mathematical abstraction which allows one to describe an object, ”(t), that satisfies ”(t) = 0
for t ”= 0 as well as

s Œ
≠Œ ”(t) dt = 1. No such standard R æ R function exists, but the formalism of generalized

functions allows us to treat ”(t) as though it was standard function. Conceptually, we may also consider ”(t)
as the limit of a Gaussian density centered at zero, with the standard deviation approaching zero.

210

i
i

i
i

i
i

i
i

6.2 The Convolution Operation

Convolutions in Probability

Convolutions also appear naturally in the context of probability. This is when considering
the distribution of a random variable that is a sum of two independent random variables.
For example consider › = ›1 + ›2 for two discrete valued independent random variables ›1
and ›2 with probability mass functions f1(t) and f2(t), respectively. Then manipulating the
probabilities and noting that P(A | B) is the conditional probability of event A given event
B, we have,

P
!
› = t

"
= P (›1 + ›2 = t)

=
Œÿ

·=≠Œ
P

!
›1 = ·

"
P

!
›1 + ›2 = t

-- ›1 = ·
"

=
Œÿ

·=≠Œ
P

!
›1 = ·

"
P

!
›2 = t ≠ ·

"

=
Œÿ

·=≠Œ
f1(·)f2(t ≠ ·)

= (f1 ı f2)(t).

In other words, the probability mass function3 of › is equal to the convolution of the
probability mass functions of ›1 and ›2.

Multiplication of Polynomials and the Convolution Matrix

The convolution also arises when multiplying polynomials. Consider two example polynomials
f(r) = f0 + f1r + f2r2, and g(r) = g0 + g1r + g2r2 + . . . + g5r5, and their product polynomial
z(r) = f(r)g(r). The degree of z(r) is 2 + 5 = 7 with coe�cients z0, . . . , z7, as follows,

z0 = f0g0,
z1 = f0g1 + f1g0,
z2 = f0g2 + f1g1 + f2g0,
z3 = f0g3 + f1g2 + f2g1,

z4 = f0g4 + f1g3 + f2g2,
z5 = f0g5 + f1g4 + f2g3,
z6 = f1g5 + f2g4,
z7 = f2g5.

(6.3)

With these expressions it is evident that, if we were to set ft = 0 for t /œ {0, 1, 2} and
similarly gt = 0 for t /œ {0, 1, 2, 3, 4, 5}, then we could denote,

zt =
Œÿ

·=≠Œ
f· gt≠· = (f ı g)t.

Further, it is also useful to consider the following alternative finite sum representation of zt

given by,
zt =

ÿ

i+j=t

figj ,

where the sum is over (i, j) pairs with i + j = t and further requiring i œ {0, 1, 2} and
j œ {0, 1, 2, 3, 4, 5}. In this context we can also view z as a vector of length 8, f as a vector

3Analogous results exist for continuous random variables where probability density functions are used in
place of probability mass functions and a continuous convolution such as (6.2) is applied.

211

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

of length 3 and g as a vector of length 6. We can then create an 8 ◊ 6 Toeplitz matrix4 T (f)
that encodes the values of f such that z = T (f)g. More specifically,

S

WWWWWWWWWWU

z0
z1
z2
z3
z4
z5
z6
z7

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

f0 0 0 0 0 0
f1 f0 0 0 0 0
f2 f1 f0 0 0 0
0 f2 f1 f0 0 0
0 0 f2 f1 f0 0
0 0 0 f2 f1 f0
0 0 0 0 f2 f1
0 0 0 0 0 f2

T

XXXXXXXXXXV

¸ ˚˙ ˝
T (f)

S

WWWWWWU

g0
g1
g2
g3
g4
g5

T

XXXXXXV
.

This shows that the convolution of f with g is a linear transformation given by the matrix-
vector product T (f)g. Since convolutions are commutative operations, we can also represent
the output z as z = T (g)f where T (g) is an 8 ◊ 3 Toeplitz matrix. In this case,

S

WWWWWWWWWWU

z0
z1
z2
z3
z4
z5
z6
z7

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

g0 0 0
g1 g0 0
g2 g1 g0
g3 g2 g1
g4 g3 g2
g5 g4 g3
0 g5 g4
0 0 g5

T

XXXXXXXXXXV

¸ ˚˙ ˝
T (g)

S

U
f0
f1
f2

T

V .

At this point, having seen that convolutions may be encoded via Toeplitz matrices such as
T (f) or T (g), we see that the convolution operation is a linear operation. The same also
holds for multi-dimensional generalizations which we discuss now.

Multi-dimensional Generalizations

The convolution operation (6.1) can be generalized to multivariate functions. In fact, for
deep learning, convolutions are almost always multivariate. Suppose f, g : Zd

æ R are two
multivariate functions with discrete domains. Then the convolution between f and g is a
commutative operation given by

(f ı g)(u) =
ÿ

vœZd

f(u ≠ v) g(v) =
ÿ

vœZd

f(v) g(u ≠ v), u œ Zd. (6.4)

This is a direct extension of (6.1) with the shifting and the flipping of the functions carried out
across all dimensions. Also, similarly to the univariate case over a continuous domain, shown
in (6.2), multivariate convolutions have continuous domain representations and these are
not presented here because convolutional neural networks use discrete domain convolutions.

The applications presented above for univariate convolutions, namely LTI systems, addition of
independent random variables, and multiplication of polynomials, also extend to multivariate

4This is a matrix with constant values on the diagonals. Observe that an n ◊ m Toeplitz matrix requires
at most n + m ≠ 1 parameters.

212

i
i

i
i

i
i

i
i

6.2 The Convolution Operation

cases. Specifically, the probability law of the sum of two independent random vectors can be
obtained via a convolution, the coe�cients of the product of multivariate polynomials can
be obtained via a convolution, and the action of an LTI system operating on a multivariate
input signal can be represented via a convolution. This last case is particularly important
for this chapter since one often considers a multivariate convolution.

Any vector, matrix, or tensor can be seen as a function from Zd to R with d = 1 for vectors,
d = 2 for matrices, and d Ø 3 for general tensors. As a result, the convolution between two
vectors, two matrices, or two tensors respectively returns a third vector, matrix, or tensor.
In particular for the d = 2 case, suppose W = [wi,j], for i = 1, . . . , Kh and j = 1, . . . , Kv,
is a Kh ◊ Kv matrix and x = [xi,j], for i = 1, . . . , Mh and j = 1, . . . , Mv, is an Mh ◊ Mv

matrix.5 In this scenario, f and g in (6.4) can be seen as functions from Z2 to R by using
the matrices W and x respectively by assigning zeros outside the range of their indices.
Then we denote the convolution f ı g as W ı x. By ignoring obvious zeros in W ı x, we can
represent this convolution as a matrix of dimension

(Mh + Kh ≠ 1) ◊ (Mv + Kv ≠ 1). (6.5)

To see how such output dimensions arise, refer to the analogy in the one dimensional
polynomial multiplication (6.3), where we consider an example with input dimensions 3 and
6 (for second and fifth degree polynomials), and thus the output dimension is 3 + 6 ≠ 1 = 8,
matching a 7th degree polynomial.

While (6.5) describes the dimensions of such classical convolutions, the convolution operation
used in deep learning di�ers. In convolutional neural networks, the dimensions of one matrix
are smaller than the corresponding dimensions of the other matrix; namely, Kh Æ Mh and
Kv Æ Mv. In this special case, taking the dimension of W as Kh ◊ Kv and the dimension of
x as Mh ◊ Mv, the convolution W ı x is usually defined to be a matrix of dimension

(Mh ≠ Kh + 1) ◊ (Mv ≠ Kv + 1), (6.6)

where now for output at iÕ = 1, . . . , Mh ≠Kh +1 and jÕ = 1, . . . , Mv ≠Kv +1, the convolution
action is,

ziÕ,jÕ = (W ı x)iÕ, jÕ =
Kh≠1ÿ

i=0

Kv≠1ÿ

j=0
wKh≠i, Kv≠j xiÕ+i, jÕ+j , (6.7)

Observe that the convolution in (6.7) is a submatrix of the result one would get if applying
(6.4). Further note that in this case, ı is not a commutative operation. Figure 6.3 (a) presents
a schematic of the convolution operation (6.7) where W is of dimesnion Kh ◊ Kv = 3 ◊ 3
and x is of dimesion Mh ◊ Mv = 6 ◊ 7. Here the output z = W ı x is a 4 ◊ 5 dimensional
matrix according to (6.6).

The green entry z1,1 in Figure 6.3 (a) is based on the green values in x and all of W . In more
detail, Figure 6.3 (b) presents the computation of the first element z1,1. For this we consider
the flipped W to obtain another 3 ◊ 3 matrix and then take the element-wise product with
the sub-matrix of dimension 3 ◊ 3 at the top left corner on the matrix x shown in (a) or also
shown in green in (b). Similarly, in (a), the red entry z1,2 is obtained by sliding the window
to the right by one pixel on the matrix x to consider the next 3 ◊ 3 sub-matrix (denoted in
red).

5We use the subscripts h and v in (Mh, Mv) or (Kh, Kv) throughout this chapter. These subscripts
stand for ‘horizontal’ (rows) and ‘vertical’ (columns) respectively.

213

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

x1,1

x2,1

x3,1

x4,1

x5,1

x6,1

x1,2

x2,2

x3,2

x4,2

x5,2

x6,2

x1,3

x2,3

x3,3

x4,3

x5,3

x6,3

x1,4

x2,4

x3,4

x4,4

x5,4

x6,4

x1,5

x2,5

x3,5

x4,5

x5,5

x6,5

x1,6

x2,6

x3,6

x4,6

x5,6

x6,6

x1,7

x2,7

x3,7

x4,7

x5,7

x6,7

w1,1

w2,1

w3,1

w1,2

w2,2

w3,2

w1,3

w2,3

w3,3

z1,1

z2,1

z3,1

z4,1

z1,2

z2,2

z3,2

z4,2

z1,3

z2,3

z3,3

z4,3

z1,4

z2,4

z3,4

z4,4

z1,5

z2,5

z3,5

z4,5

W

x

z

? =

(a)

x1,1

x2,1

x3,1

x1,2

x2,2

x3,2

x1,3

x2,3

x3,3

w1,1

w2,1

w3,1

w1,2

w2,2

w3,2

w1,3

w2,3

w3,3

w3,3

w2,3

w1,3

w3,2

w2,2

w1,2

w3,1

w2,1

w1,1

�
P

Flipping

z1,1

(b)

Figure 6.3: (a) Convolution between two matrices W and x to get z = W ı x. The dimensions of
W and x are Kh ◊ Kv = 3 ◊ 3 and Mh ◊ Mv = 6 ◊ 7, respectively. The dimension of the output
z is (Mh ≠ Kh + 1) ◊ (Mv ≠ Kv + 1) = 4 ◊ 5. (b) Computation of the first element z1,1 of the
convolution W ı x. Here, § denotes the element-wise product between two matrices of the same
dimension and

q
denotes the summation of all the elements of a matrix.

The convolution operation continues with this process until we reach the top right corner on
x to obtain the last element z1,5 of the first row of z. To obtain the second row, z2,1, . . . , z2,5,
we repeat the same process by moving the window one row down on x. Ultimately, after the
window is at 4 horizontal positions and 5 vertical positions the 4 ◊ 5 dimensional output z
is obtained. Note that from an implementation perspective, especially when using graphical
processing units (GPUs), the computation of z can be parallelized by carrying out the
operations illustrated in Figure 6.3 (b) simultaneously for each output zi,j .

Now suppose W and x are 3-dimensional tensors with respective dimensions Kc ◊ Kh ◊ Kv

and Mc ◊Mh ◊Mv, where similarly to before W is smaller than x in the sense that Kc Æ Mc,
Kh Æ Mh, and Kv Æ Mv. Here the new dimension sizes Kc and Mc are referred to as
the depth of the corresponding tensor. For instance, if x denotes a color image then the
depth Mc = 3 is attributed to the red, blue, and green components of the image. In this
3-dimensional setup, (6.7) can be generalized to provide a volume convolution, W ı x, with

214

i
i

i
i

i
i

i
i

6.2 The Convolution Operation

output dimension,

(Mc ≠ Kc + 1) ◊ (Mh ≠ Kh + 1) ◊ (Mv ≠ Kv + 1). (6.8)

Here, for kÕ = 1, . . . , Mc ≠ Kc + 1, iÕ = 1, . . . , Mh ≠ Kh + 1, and jÕ = 1, . . . , Mv ≠ Kv + 1,

(W ı x)kÕ,iÕ,jÕ =
Kc≠1ÿ

k=0

Kh≠1ÿ

i=0

Kv≠1ÿ

j=0
WKc≠k, Kh≠i, Kv≠j xkÕ+k, iÕ+i, jÕ+j . (6.9)

For deep learning, an important special scenario is the case in which the depths of both
W and x are the same, namely Kc = Mc. In this case the depth is also called the number
of input channels. In such a scenario, the dimensions in (6.8) have a depth of 1 and thus
the output of the volume convolution W ı x defined by (6.9) can be viewed as a matrix of
dimension (6.6). This convolution can also be represented as,

W ı x =
Kcÿ

i=1
W(i) ı x(i), (6.10)

where the ı on the right hand side denotes the matrix convolution as in (6.7) and the
summation is element-wise. Here the matrices that are convolved are W(i) which is the ith
matrix along the depth of W and x(i) which is the ith matrix along the depth of x (also
called the i’th input channel).

Edge Detection Revisited

From an engineering viewpoint, convolutions implement filters, and in the context of image
processing (of monochrome images) these are often two dimensional convolutions. We now
explore the operation of one such engineered filter, the Sobel filter for edge detection, first
mentioned in Section 6.1 and applied in Figure 6.1.

Suppose an input image x = [xi,j] is of dimension Mh ◊ Mv. As we have seen earlier, edge
detection involves two separate operations, namely, vertical edge detection and horizontal
edge detection, exemplified in Figure 6.1 (b) and (c) respectively. With Sobel filtering, each
of these operations is a convolution of x with a 3 ◊ 3 kernel matrix given by either,

W (¡) =

S

U
≠1 ≠2 ≠1
0 0 0
1 2 1

T

V , or W (Ï) =

S

U
≠1 0 1
≠2 0 2
≠1 0 1

T

V ,

for horizontal or vertical edge detections, respectively. The actual entries of W (¡) and
W (Ï) are part of the Sobel filter design and were engineered6 to achieve edge detection.
Such filters were developed via engineering intuition, trial and error, and experimentation.
From our perspective the actual entries of W (¡) and W (Ï) are merely an example since
in convolutional neural networks, the values of filters (weights in convolutional layers) are
automatically learned during training.

Suppose y(¡) and y(Ï) are the outputs corresponding to horizontal edge detection and
vertical edge detection, respectively. These outputs are each computed using (6.7) with W

6Sobel filters work by approximating the gradient of the image intensity via a discrete di�erentiation
operation.

215

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

replaced by W (¡) and W (Ï) respectively, both using the same input image x. The overall
edge detection can be obtained by superimposing the two outputs as the pixel-wise sum
y(¡) + y(Ï), or average (y(¡) + y(Ï))/2. In case of color images, one may apply Sobel filters
seperatly on each color component, or seek other generalizations and use the convolution
formulas (6.9) or (6.10).

6.3 Building a Convolutional Layer
In Chapter 5, we have seen the construction of general fully connected neural networks,
each of which consists of a series of layers where every neuron in a given layer is connected
to every neuron in the next layer. These networks are general in the sense that they are
structure agnostic, that is, there are no specific assumptions made about the structure of
the input. This property makes fully connected neural networks versatile. However, they are
inadequate when dealing with specific applications, such as image classification, where the
input has rich structural properties.

Convolutional neural networks make use of the aforementioned two key properties of grid-
structured data, namely translation invariance and locality. As a result, the number of
parameters to learn in convolutional neural networks is significantly smaller than that
of corresponding fully connected neural networks. Convolutional layers are based on the
convolution operation, and in this section we focus on building a single convolutional layer.

Motivating a Convolutional Layer

Convolutional neural networks are designed so that the spatial properties of the image data
are inherited from one layer to the next. Therefore, for image processing, it is better to
represent both the input and output of a convolutional layer as images. As we are familiar
from Chapter 5 with fully connected neural networks, to build a convolutional layer, we
begin with a fully connected layer and then we show how the number of learned parameters
is reduced using translation invariance and locality.

Consider an input dataset consisting of two dimensional grey scaled images x of dimension
M [0]

h
◊ M [0]

v . For the time being, we focus on the first hidden layer of this fully connected
network and the superscript [0] denotes that x is an input to this layer. Each input image x
is a matrix with the (i, j)-th element denoting the pixel value at the (i, j)-th location on the
image. When treating x as an input to a fully connected neural network, it is represented as
an M [0]

h
· M [0]

v dimensional vector consisting of all the elements of x. Since such a matrix
to vector conversion is executed in a consistent manner,7 without loss of generality we can
continue to index the elements of the vector x via tuples (i, j) œ {1, . . . , M [0]

h
}◊{1, . . . , M [0]

v }.

We wish to represent the output of the first layer also as an image,8 in this instance having
dimension M [1]

h
◊M [1]

v . Thus, as with the input, the output vector a[1] can also be represented
as a matrix, indexed by tuples (iÕ, jÕ) œ {1, . . . , M [1]

h
} ◊ {1, . . . , M [1]

v }. As described in
Chapter 5, the output a[1] is composed of an a�ne transformation of x parameterized by
W [1] and b[1] composed with a non-linear activation function S[1](·); see (5.2). Here, with
our image based indexing we represent each element of W [1] as w[1]

(iÕ,jÕ),(i,j) and each element
7This can be in column major or row major form, and the specific choice between the two is insignificant

as long as consistency is maintained.
8This requires a non-prime number of neurons in the first layer.

216

i
i

i
i

i
i

i
i

6.3 Building a Convolutional Layer

of b[1] as b[1]
iÕ,jÕ . With this notation, the output of the layer is

a[1] = S[1](z[1]), where z[1]
iÕ,jÕ =

ÿ

(i,j)

w[1]
(iÕ,jÕ),(i,j) xi,j + b[1]

iÕ,jÕ . (6.11)

It is useful to represent each element of z[1] slightly di�erently. For this fix (iÕ, jÕ) and reindex
the terms in the summation by setting (iÕÕ, jÕÕ) for each (i, j) such that

i = iÕ + iÕÕ, and j = jÕ + jÕÕ.

Now z[1]
iÕ,jÕ can be represented as

z[1]
iÕ,jÕ =

ÿ

(iÕÕ,jÕÕ)

w[1]
(iÕ,jÕ),(iÕ+iÕÕ,jÕ+jÕÕ) xiÕ+iÕÕ,jÕ+jÕÕ + b[1]

iÕ,jÕ , (6.12)

where in the summation, (iÕÕ, jÕÕ) œ {1 ≠ iÕ, . . . , M [0]
h

≠ iÕ
} ◊ {1 ≠ jÕ, . . . , M [0]

v ≠ jÕ
}. Observe

that generally these indices, iÕÕ and jÕÕ, take on both positive and negative values as they
reflect the o�set relative to iÕ and jÕ respectively.

We now return to the first structural property of image data, namely, translation invariance.
With this property, we expect that any shift in x results only as a shift in the output. As
an illustration, let us revisit edge detection and consider a pelican in flight as shown in
Figure 6.4. In (a) we see an input to an edge detection filter and in (b) we have the output.
Similarly, (c) and (d) are input–output pairs of a similar image. Observe that the pairs
(a)-(b) and (c)-(d) are essentially the same, except for the fact that the position of the
pelican in the output depends only on its position in the input. In other words, the filtering
operation’s action on the object is generally independent of the location of the object in the
image.

In mathematical terms, such translation invariance implies that the weights w[1]
(iÕ,jÕ),(iÕ+iÕÕ,jÕ+jÕÕ)

must be independent of the output indices (iÕ, jÕ) because (iÕ, jÕ) is the pixel location in
the output image. With the change of variables, we can use iÕÕ and jÕÕ as relative o�sets to
that pixel coordinate instead of absolute coordinates. We can then define a smaller set of
parameters made of weights wiÕÕ,jÕÕ and a scalar bias b such that for all output coordinates
(iÕ, jÕ), the original parameters are

w[1]
(iÕ,jÕ),(iÕ+iÕÕ,jÕ+jÕÕ) = wiÕÕ,jÕÕ and b[1]

iÕ,jÕ = b.

This simplifies the expression for z[1]
iÕ,jÕ in (6.12) to be,

z[1]
iÕ,jÕ =

ÿ

(iÕÕ,jÕÕ)

wiÕÕ,jÕÕ xiÕ+iÕÕ,jÕ+jÕÕ + b. (6.13)

The expression (6.13) already indicates a significant reduction in the number parameters to
learn in comparison to (6.12). To see this observe that in (6.12) our weights potentially vary
based on iÕ and jÕ whereas in (6.13) they do not.

We now see further reduction of the parameters by invoking the second structural property,
namely locality. Viewed in terms of pixels, this property states that a pixel xi,j is not
significantly influenced by far away pixels. A motivational illustration is in Figure 6.5

217

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

(a) (b)

(c) (d)

Figure 6.4: Edge detection of images with a pelican to illustrate the property of translation
invariance.

consisting of pelicans and seagulls, with each individual bird enclosed in a red box. Generally,
the structural property of locality implies that if we are seeking information about one of
these specific birds, then it is su�cient to know the pixel information only within the box
that is enclosing the bird. Similarly, at a much finer level when we seek information about
edges or similar features, it is often enough to consider 1, 2, or 3, neighboring pixels in each
direction – yielding convolution kernels of size 3 ◊ 3, 5 ◊ 5, or 7 ◊ 7 respectively.

(a) (b)

Figure 6.5: Images of birds to illustrate the property of locality. The pixel information within each
red box is typically su�cient for understanding the characteristics of the bird inside the box.

218

i
i

i
i

i
i

i
i

6.3 Building a Convolutional Layer

To mathematically enforce locality for the evaluation of z[1]
iÕ,jÕ , we ignore the pixel values

xiÕ+iÕÕ,jÕ+jÕÕ for iÕÕ < 0, jÕÕ < 0, iÕÕ
Ø Kh, and jÕÕ

Ø Kv for some chosen Kh, Kv > 0; e.g.
Kh, Kv at 3, 5, or 7. Equivalently, we set wiÕÕ,jÕÕ = 0 for all (iÕÕ, jÕÕ) with iÕÕ /œ {0, . . . , Kh ≠ 1}

and jÕÕ /œ {0, . . . , Kv ≠ 1}. This further reduces the layer’s a�ne transformation to be,

z[1]
iÕ,jÕ =

Kh≠1ÿ

iÕÕ=0

Kv≠1ÿ

jÕÕ=0
wiÕÕ,jÕÕ xiÕ+iÕÕ,jÕ+jÕÕ

¸ ˚˙ ˝
ı

+ b, (6.14)

where the first term marked by ı is essentially a convolution W ı x with W denoting a kernel
matrix9 of dimension Kh ◊ Kv. Hence, the operation of the layer can be represented as

a[1] = S[1](z[1]), where z[1] = (W ı x) + b, (6.15)

where the addition of the scalar bias b is element wise to each element of the matrix W ı x.
Note that the ı convolution operation in (6.14) and (6.15) is slightly di�erent from (6.7)
studied in the previous section. To see this di�erence, recall that the (iÕ, jÕ)-th element of
the convolution operation (6.7) is given by

Kh≠1ÿ

iÕÕ=0

Kv≠1ÿ

jÕÕ=0
wKh≠iÕÕ,Kv≠jÕÕ xiÕ+iÕÕ,jÕ+jÕÕ ,

and compare this with the summation marked by ı in (6.14). Hence in our case, W ı x is
the conventional convolution if we replace each wiÕÕ,jÕÕ with wKh≠iÕÕ,Kv≠jÕÕ ; i.e., flipping at
the origin. In the context of neural networks, such a replacement only implies reindexing
of the learned parameters and has no e�ect on the network structure or its performance.
For instance, if we observe the edge detection operation illustrated in Figure 6.1, the filter
w is flipped only once, and after that for any input x we obtain an element-wise product
between the flipped w and sub-matrices of x. Therefore, learning a filter and learning its
flipped version are equivalent. As a result, in deep learning, the flipping operation is avoided
for simplicity. In any case, the kernel matrix W is still called a convolutional kernel.

In summary we have seen that at its core, a single convolutional layer involves the following
actions on the input x. First it is convolved with a convolution kernel W . Then the result is
shifted by a scalar bias b. Finally an activation function S[1](·) is applied. These actions are
summarized in (6.15). Note that when the input dimension is M [0]

h
◊ M [0]

v , using (6.6), the
dimension of the output is,

M [1]
h

◊ M [1]
v

= (M [0]
h

≠ Kh + 1) ◊ (M [0]
v

≠ Kv + 1). (6.16)

For an illustration of the reduction in the number of parameters that a convolutional layer
has in comparison to a fully connected layer, consider an example with input dimension
M [0]

h
◊ M [0]

v = 224 ◊ 224 and a case with kernel dimension Kh ◊ Kv = 3 ◊ 3. Here with
(6.16), the output dimension is M [1]

h
◊ M [1]

v = 222 ◊ 222. If we were to seek the same size of
output dimension with a fully connected layer, we have 222 ◊ 222 = 49, 284 neurons. Since
the input size is 224◊224 = 50, 176, the dimension of the weight matrix is the product of the
input size and output size (number of neurons), and together with the bias vector (one entry

9In Chapter 5 the notation W is used for weight matrices whereas here it is a (generally) smaller kernel
matrix. Note that it implicitly defines a weight matrix, not directly used in computation.

219

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

for each neuron) we have 2, 472, 923, 268 parameters. In contrast, in the convolutional layer
there are only 3 ◊ 3 + 1 = 10 parameters. While on its own, such a single convolutional layer
is certainly not as expressive as the fully connected layer with 2.5 billion learned parameters,
as we see below, combining convolutional layers in tandem yields very powerful networks
with much fewer parameters than their fully connected counterparts.

Alterations to the Convolution: Padding, Stride, and Dilation

The convolution appearing in (6.14) is often tweaked and modified in the context of image
data. Specifically, alterations to the convolution operation, known as padding, stride, and
dilation, are sometimes employed. For a fixed kernel of dimension Kh ◊ Kv, the combination
of these modifications allows us to control the output size as well as the e�ective input
size. Before diving into the details, we mention that these alterations are parameterized by
non-negative integer pairs, (ph, pv) for padding, (sh, sv) for stride, and (dh, dv) for dilation,
where the subscript h is for height and the subscript v is for width.

In the basic convolution operation above, the absence of padding, stride, and dilation is
via a selection of (0, 0) for padding and stride, as well as a selection of (1, 1) for dilation.
Such a choice yields output dimension as in (6.16). However, when increasing these integers
(typically by small single digit numbers), the output dimension formula (6.16) is generalized
to,

M
[1]
h

◊ M
[1]
v =

3
1 +

Í
M

[0]
h

≠ dh(Kh ≠ 1) ≠ 1 + ph

sh

Î4
◊

3
1 +

Í
M

[0]
v ≠ dv(Kv ≠ 1) ≠ 1 + pv

sv

Î4
,

(6.17)

where ÂuÊ represents the largest integer not greater than u. We now introduce and motivate
each of these alterations separately and develop (6.17). The reader may verify that with the
aforementioned default settings (0 for padding and stride, and 1 for dilation), (6.17) reduces
to (6.16).

To motivate padding, recall the edge detection example above. Due to the convolution
operation, the output image dimension is smaller than the input image dimension. In
particular, since the filter dimension Kh ◊ Kv is 3 ◊ 3 (Sobel filter), when the input
dimension is M [0]

h
◊ M [0]

v , the output dimension is equal to (M [0]
h

≠ 2) ◊ (M [0]
v ≠ 2) as in

(6.16). Hence we see a slight reduction of the image size at the output. Since convolutional
neural networks typically consist of several convolutional layers, the dimension reductions in
each of these layers can accumulate, making the overall downstream dimension undesirably
small. Padding is a simple solution to overcome this problem by adding extra zero-valued
pixels around the input so that the e�ective input dimension is higher, and the desired
output dimension is obtained.

To illustrate padding consider the example in Figure 6.3 (a). Here a convolutional layer with
a kernel of dimension 3 ◊ 3 is applied to inputs of dimension 6 ◊ 7. Without padding, for
each input we get an output of dimension 4 ◊ 5. Now suppose we increase the dimension
of the input to 8 ◊ 9 by adding zeros around the input image. Then when we apply the
convolution on the modified input, the output dimension is 6 ◊ 7, which is equal to the
unpadded input image dimension. Figure 6.6 illustrates this operation.

220

i
i

i
i

i
i

i
i

6.3 Building a Convolutional Layer

w1,1

w2,1

w3,1

w1,2

w2,2

w3,2

w1,3

w2,3

w3,3

x1,1

x2,1

x3,1

x4,1

x5,1

x6,1

x1,2

x2,2

x3,2

x4,2

x5,2

x6,2

x1,3

x2,3

x3,3

x4,3

x5,3

x6,3

x1,4

x2,4

x3,4

x4,4

x5,4

x6,4

x1,5

x2,5

x3,5

x4,5

x5,5

x6,5

x1,6

x2,6

x3,6

x4,6

x5,6

x6,6

x1,7

x2,7

x3,7

x4,7

x5,7

x6,7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

x1,1

x2,1

x3,1

x4,1

x5,1

x6,1

x1,2

x2,2

x3,2

x4,2

x5,2

x6,2

x1,3

x2,3

x3,3

x4,3

x5,3

x6,3

x1,4

x2,4

x3,4

x4,4

x5,4

x6,4

x1,5

x2,5

x3,5

x4,5

x5,5

x6,5

x1,6

x2,6

x3,6

x4,6

x5,6

x6,6

x1,7

x2,7

x3,7

x4,7

x5,7

x6,7

z1,1

z2,1

z3,1

z4,1

z5,1

z6,1

z1,2

z2,2

z3,2

z4,2

z5,2

z6,2

z1,3

z2,3

z3,3

z4,3

z5,3

z6,3

z1,4

z2,4

z3,4

z4,4

z5,4

z6,4

z1,5

z2,5

z3,5

z4,5

z5,5

z6,5

z1,6

z2,6

z3,6

z4,6

z5,6

z6,6

z1,7

z2,7

z3,7

z4,7

z5,7

z6,7W

x
x with padding

z

?

Padding

Figure 6.6: Illustration of convolution with padding. In this example a 3 ◊ 3 convolution with a
padding setting of (ph, pv) = (2, 2) maintains the same dimensions for the output z as the input x.

More generally, again suppose that the input dimension is M [0]
h

◊ M [0]
v and the kernel

dimension is Kh ◊ Kv. Further suppose that each input image is modified by adding ph rows
roughly half on the top and half on the bottom, and pv columns roughly half on the left
and half on the right. Then it is easy to check that (6.16) is modified so that the output
dimension is

M [1]
h

◊ M [1]
v

= (M [0]
h

≠ Kh + ph + 1) ◊ (M [0]
v

≠ Kv + pv + 1). (6.18)

Note that setting (ph, pv) = (Kh ≠ 1, Kv ≠ 1) is a mechanism for ensuring that the input
and the output are of the same dimension. Also note that typically convolutional neural
networks are designed to have kernels of odd height and odd width. Hence it is common to
pad with exactly ph/2 rows of zeros on the left and ph/2 rows of zeros on the right, and
similarly for the vertical dimension as shown in (6.6). This helps maintain spatial symmetry
while conducting convolutions.

The convolutions we presented up to now involved shifts of the convolution kernel by one
pixel at a time. This is called a convolution with a stride of one, or (sh, sv) = (1, 1). However,
in many applications, we may wish to slide the convolution kernel with bigger steps in order
to either reduce the computational cost, or to reduce the dimension of the output of the
convolutional layer. This is achieved by adjusting the stride size (sh, sv) to be greater than
one.

As a toy example consider Figure 6.7 where the dimension of the input is 10 ◊ 10 (potentially
after padding), and the kernel is of dimension 3◊3. For this example let us use an hypothetical
stride setting of (sh, sv) = (5, 4). This setting implies that the convolution kernel is shifted
in each step with 5 pixels down, or 4 pixels to the right. As usual we start from the top-left

221

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

xxxxxxxxxx

sv =
4

sh = 5

WWW

WWW

WWW

WWW

zz

Figure 6.7: Illustration of a convolution with stride settings (sh, sv) = (5, 4). In this hypothetical
example there is no overlap, yet in practice one often uses smaller stride settings.

corner, placing the 3 ◊ 3 convolution kernel on the input image to compute the first element
of the output. After computing each element, we move the convolution kernel by 4 pixels to
the right and compute the next element of the row. Once a row of the output is finished, we
move the convolution kernel downwards by 5 pixels and repeat the horizontal shifting for
the next row of the output. Each time we compute an element of the output, we make sure
there are enough selected input pixels for the convolution kernel.

Note that in this example, for ease of presentation in the figure, we chose stride settings
greater than the size of the convolution kernel and this implies no overlap of the sliding
windows. However, in practice one typically uses stride settings of size 2, 3, or similar small
steps, smaller than Kh and Kv, and this yields overlap in the convolution multiplications.
In general the e�ect of a stride is in data reduction allowing us to create outputs that
are smaller in dimensions than the input, yet capture the essential information. A second
mechanism for such reductions is pooling, a concept described in Section 6.4.

The alternation of convolutions, with stride settings (sh, sv), modifies the output dimension
equation from (6.18) to

M [1]
h

◊ M [1]
v

=
A

1 +
ÍM [0]

h
≠ Kh + ph

sh

ÎB
◊

A
1 +

ÍM [0]
v ≠ Kv + pv

sv

ÎB
. (6.19)

The expression results from the fact that the number of elements computed in each row
of the output after computing the first element of the row is equal to the number of
rightwards moves allowed. With an e�ective input row size of M [0]

v + pv, this number is
Â(M [0]

v ≠ Kv + pv)/svÊ. Adding 1 due to the first element, yields the width of the output;
similarly for the height.

We now focus on dilation, a technique for increasing the receptive field. The receptive field
of an individual filter is marked by the dimensions of the window in the input x that a�ect
a single pixel in the output. For example with a standard 3 ◊ 3 convolution, the receptive

222

i
i

i
i

i
i

i
i

6.3 Building a Convolutional Layer

field is 3 ◊ 3 since each pixel in W ı x is influenced by a 3 ◊ 3 window in x. When layers are
composed, the receptive field has a more general meaning since as data propagates down
the network, the receptive field grows.

Dilation increases the respective field by spreading out the elements of the kernel matrix W
via the insertion of zeros between elements. This alteration allows the kernel to cover a larger
area of the input image without increasing the number of learned parameters. The level of
dilation is determined by the settings (dh, dv) where dilation converts a kernel of size Kh ◊Kv

to a kernel of size K Õ
h

◊ K Õ
v

= (dh(Kh ≠ 1) + 1) ◊ (dv(Kv ≠ 1) + 1). Specifically, dilation adds
dh ≠1 all-zero rows between each pair of adjacent rows from the original kernel, and similarly
adds dv ≠ 1 columns. Thus the number of all zero rows added is (Kh ≠ 1)(dh ≠ 1), and
similarly (Kv ≠ 1)(dv ≠ 1) for columns. See Figure 6.8 for an example with (dh, dv) = (2, 2).

w1,1

w2,1

w3,1

w1,2

w2,2

w3,2

w1,3

w2,3

w3,3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

x1,1

x2,1

x3,1

x4,1

x5,1

x6,1

x1,2

x2,2

x3,2

x4,2

x5,2

x6,2

x1,3

x2,3

x3,3

x4,3

x5,3

x6,3

x1,4

x2,4

x3,4

x4,4

x5,4

x6,4

x1,5

x2,5

x3,5

x4,5

x5,5

x6,5

x1,6

x2,6

x3,6

x4,6

x5,6

x6,6

x1,7

x2,7

x3,7

x4,7

x5,7

x6,7

z1,1

z2,1

z1,2

z2,2

z1,3

z2,3

w1,1

w2,1

w3,1

w1,2

w2,2

w3,2

w1,3

w2,3

w3,3W

x

z

?

Dilation

Figure 6.8: Illustration of dilation operation with (dh, dv) = (2, 2) extending a 3 ◊ 3 convolution
filter to create a receptive field of 5 ◊ 5.

Overall, together with a padding of size (ph, pv) and a stride of size (sh, sv), a dilation factor
of (dh, dv) implies that the output dimension is determined by (6.17). To see this, replace
Kh and Kv in (6.19) with the e�ective kernel sizes K Õ

h
and K Õ

v
, respectively.

Inputs with Multiple Channels

So far in this section we have looked at the case where each input is a matrix, usually
representing a grey scale image. However, convolutional networks often deal with inputs
comprised of multiple channels. For instance, a color image has three channels representing
the red, green, and blue components. When we have such data with multiple channels, input
to a convolutional layer is no longer a matrix but is rather represented as a three dimensional
tensor. We denote this tensor’s dimensions via M [0]

c ◊ M [0]
h

◊ M [0]
v , where the depth M [0]

c

223

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

denotes the number of channels, and the other two numbers are for the height and width
dimensions as used previously. Hence, for color images we have M [0]

c = 3 and further, as we
describe in the sequel, for hidden layers we often have more than 3 input channels to the
layer.

M
[0]
v

M
[0]
h

M
[0]
c

x

Kv

Kh
Kc

W

x(1)

W(1)

x(2)

W(2)

x(3)

W(3)

?

?

?

?

= =

+

+

W ? x

Figure 6.9: Graphical representation of the typical convolution operation with Kc = M
[0]
c . In this

example M
[0]
c = 3 input channels and we use an M

[0]
c ◊ 3 ◊ 3 convolution kernel.

To deal with inputs with multiple channels we often conduct a volume convolution as in
(6.9). For this we use a kernel W with depth greater than one which is a three dimensional
tensor with dimensions denoted via Kc ◊ Kh ◊ Kv, such that Kc Æ M [0]

c , Kh Æ M [0]
h

, and
Kv Æ M [0]

v . In fact, the typical case is to set Kc = M [0]
c where the output is a matrix and

the convolution is as in (6.10).

Namely for input tensor x, the convolution W ı x is a matrix which is computed via an
element-wise sum of the two dimensional convolutions W(i) ı x(i) for i = 1, . . . , M [0]

c . Each
W(i) ıx(i) is a matrix of dimension M [1]

h
◊M [1]

v as in (6.17). This two dimensional convolution
is based on the ith channel in the input tensor, denoted x(i), and on W(i) which is the
corresponding Kh ◊ Kv dimensional matrix matching channel i in the convolution kernel
tensor W . Note that the same settings of padding, stride, and dilation are applied across all
the channels. Figure 6.9 illustrates such a volume convolution for the case of M [0]

c = Kc = 3.

224

i
i

i
i

i
i

i
i

6.3 Building a Convolutional Layer

After the volume convolution is carried out, a single scalar bias term, b, is added to each
element of the matrix W ı x. Then a (generally) non-linear activation function S[1](·) is
applied. Hence the action of the convolution on multiple input channels parallels (6.15) and
is,

a[1] = S[1](z[1]), where z[1] =
1 M

[0]

cÿ

i=1
W(i) ı x(i)

2
+ b. (6.20)

Outputs with Multiple Channels

Until now, regardless of the number of input channels, the output is a matrix, denoted via
a[1] in (6.20). This is because, so far there is only one kernel, possibly a tensor, operating on
the input to the convolutional layer. However, most popular convolutional neural networks
have convolutional layers with multiple kernels operating on the input simultaneously. In this
case, the output of the layer is a collection of matrices denoted by a[1]

(j) for j = 1, . . . , M [1]
c ,

where M [1]
c is the number of output channels (also known as feature maps). Consequently,

the output can be viewed as a 3-dimensional tensor of dimension M [1]
c ◊ M [1]

h
◊ M [1]

v .

M
[0]
v

M
[0]
h

M
[0]
c

?

x

Kv

Kh
Kc

W(1)

Kv

Kh
Kc

W(2)

?

x

W(1)

?

x

W(2)

= =

W ? x

Figure 6.10: Illustration of a convolutional layer with 3 input channels and 2 output channels.

In this case, the convolutional layer is parameterized by multiple kernels W(j) for j =
1, . . . , M [1]

c , each with a scalar bias term b(j). In particular, the kernel W(j) and bias term
b(j) correspond to the output channel j. With this notation, the operation of the layer can
be represented as,

a[1]
(j) = S[1](z[1]

(j)), where z[1]
(j) =

1 M
[0]

cÿ

i=1
W(j),(i) ı x(i)

2
+ b(j), (6.21)

225

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

for j = 1, . . . , M [1]
c , where similarly to (6.20), W(j),(i) is the matrix corresponding to the ith

input channel for the jth kernel. See Figure 6.10 for an illustration in the case of M [0]
c = 3

and M [1]
c = 2 (3 input channels and 2 output channels).

It is a common practice to use the same dimension Kc ◊ Kh ◊ Kv for all kernels W(j) of
the layer with the same settings of padding (ph, pv), stride (sh, sv), and dilation (dh, dv) for
all the channels. In that case, the dimension M [1]

h
◊ M [1]

v of each output channel is given
by (6.17).

As an illustrative hypothetical example of multiple output channels, assume that the input
to the first layer is a color image with three channels. One kernel can be used to extract
horizontal edges in each input channel of the image while another kernel of the same size
extracts vertical edges. In that case, the output has two channels where one consists of
horizontal edges and the other consists of the vertical edges. More generally, in trained
networks, we can think of di�erent channels of the output as di�erent feature extractions
from the input. These channels jointly help in overall feature extraction for the whole
network.

6.4 Building a Convolutional Neural Network
We have now acquired all the crucial elements necessary for constructing convolutional
neural networks, such as the VGG19 model depicted in Figure 6.2. We now put the pieces
together for constructing a convolutional neural network that, in addition to convolutional
layers, includes fully connected layers, as studied in Chapter 5, and pooling layers described
in this section. This section also o�ers complete details of the previously introduced VGG19
network, serving as an illustrative example. It also introduces fully convolutional networks,
an architecture that uses convolutional layers in place of fully connected layers.

A convolutional neural network is generally deep with multiple layers, similar to feedforward
networks studied in Chapter 5. Unlike feedforward networks which consist of only fully
connected layers, convolutional neural networks have di�erent types of layers, of which some
are trainable and the others are not, and the trainable layers are further broken up into
convolutional layers and dense layers. Using the notation of Chapter 5, we use L for the
number of layers, and decompose L to

L = Ltrain + Lpool, where Ltrain = Lconv + Ldense.

Here Ltrain, counts the number of trainable layers, whereas Lpool counts the number of layers
that do not have trainable parameters. Further, the trainable layers are either convolutional
layers, counted by Lconv, or fully connected layers, counted by Ldense. It is important to
note that in terms of naming conventions, in some instances the depth of the network is
taken as L, whereas in others it is taken as Ltrain. For example, in the VGG19 network,

L = 24, Ltrain = 19, Lpool = 5, Lconv = 16, Ldense = 3, (6.22)

yet the network is called VGG19 and not “VGG24”.

Similar to a feedforward network, the goal of a convolutional neural network is to approximate
some unknown function fú(·). For instance, for classification of image data with animal
faces, the function value fú(x) for any given image x may yield a probability vector with the

226

i
i

i
i

i
i

i
i

6.4 Building a Convolutional Neural Network

highest weight on the index associated with the label of the image x. A convolutional neural
network defines a mapping f◊(·) and learns the values of the unknown parameters ◊ that
ideally result in fú(x) ¥ f◊(x) for as many input images x as possible. In general, similar
to equation (5.1) for feedforward networks, the approximating function f◊(·) is recursively
composed as

f◊(x) = f [L]
◊[L]

(f [L≠1]
◊[L≠1]

(. . . (f [1]
◊[1]

(x)) . . .)),

where for each ¸, the function f (¸)
◊[¸]

(·) is associated with the ¸th layer which depends on the
layer’s parameters ◊[¸]

œ �[¸]. Note that for layers that are not trainable (as counted via
Lpool), the parameter space �[¸] is empty.

In general, similarly to feedforward networks, it is useful to denote the neuron activations of
the network via a[1], a[2] . . . , a[L] where a[L] = ŷ is the output, and for ¸ = 1, . . . , L ≠ 1,

a[¸] = f [¸]
◊[¸]

(a[¸≠1]),

with a[0] = x. We mention that the shape of the neurons per layer a[¸] varies as it is sometimes
a tensor (of order 3) and sometimes a vector, depending on the type of layer.

Convolutional Layers

When the ¸-th layer of the network is a convolutional layer, then f (¸)
◊[¸]

(·) uses (6.21), treating
a[¸≠1] as the input. In this case the input and output are generally 3-tensors as we have seen
in the previous sections. In particular,

f (¸)
◊[¸]

: RM
[¸≠1]

c ◊M
[¸≠1]

h
◊M

[¸≠1]

v ≠æ RM
[¸]

c ◊M
[¸]

h
◊M

[¸]

v ,

maps a[¸≠1] of dimension M [¸≠1]
c ◊ M [¸≠1]

h
◊ M [¸≠1]

v to a[¸] of dimension M [¸]
c ◊ M [¸]

h
◊ M [¸]

v .
Now (6.21) is implement for the M [¸]

c output channels and this operation can be represented
as,

f (¸)
◊[¸]

!
a[¸≠1]" = S[¸]

1 Ë
b[¸]

(j) +
M

[¸≠1]

cÿ

i=1
W [¸]

(j),(i) ı a[¸≠1]
(i)

¸ ˚˙ ˝
z

[¸]

(j)

È

j=1,...,M
[¸]

c

2
,

where the input tensor has M [¸≠1]
c channels and the output tensor has M [¸]

c channels. Using
similar notation to (6.21), the kernel W [¸]

(j) is of dimension K [¸]
c ◊ K [¸]

h
◊ K [¸]

v (the same for all
output channels j) where the kernel matrix for the i-th input channel and j-th output channel
is denoted W [¸]

(j),(i). The tensor after the volume convolutions and bias term is denoted using
the notation

#
z[¸]

(j)
$

j=1,...,M
[¸]

c
where each z[¸]

(j) is a matrix of dimension M [¸]
h

◊ M [¸]
v .

Note that the activation function S[¸](·) is now considered as a function applied on a tensor of
dimension M [¸]

c ◊ M [¸]
h

◊ M [¸]
v . It is typically an element-wise application of scalar activation

functions ‡[¸](·) similarly to previous feedforward examples. In fact, the common activation
function is ‡ReLU(·); see Section 5.3.

227

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

Observe that the number of learned parameters for the layer is ,

M [¸]
c

·

1
M [¸≠1]

c
· K [¸]

h
· K [¸]

v
+ 1

2
, (6.23)

since there are M [¸]
c kernels (one per output channel) each of dimension K [¸]

c ◊ K [¸]
h

◊ K [¸]
v

where K [¸]
c = M [¸≠1]

c (the number of input channels to the layer) and since each output
channel adds a scalar bias term.

Pooling Layers

As mentioned above, there are also non-trainable layers counted by Lpool and these are
typically pooling layers. The main idea of a pooling layer is to reduce the height and width
of the input tensor a[¸≠1] to achieve a lower dimensional output tensor a[¸] while retaining
the same number of channels. The operation of the layer can be summarized with a function,

f (¸)
pool : RM

[¸≠1]

c ◊M
[¸≠1]

h
◊M

[¸≠1]

v ≠æ RM
[¸]

c ◊M
[¸]

h
◊M

[¸]

v ,

with M [¸≠1]
c

= M [¸]
c

, M [¸≠1]
h

> M [¸]
h

, and M [¸≠1]
v

> M [¸]
v

.

Generally for some fixed channel j, and pixel coordinates of the output (i, k), a pooling
operation operates on pixels from a window in the input denoted via I(i,k). Here I(i,k) is a set
of pixel coordinates in the input that are maped to the specific output pixel (i, k). There are
two popular pooling techniques used in practice, namely, max-pooling and average-pooling.
For each channel j, the pooling operation can be summarized as,

Ë
a[¸]

(j)

È

i,k

=

Y
__]

__[

max(iÕ,kÕ)œI(i,k)

Ë
a[¸≠1]

(j)

È

iÕ,kÕ
, (max-pooling)

1
|I(i,k)|

q
(iÕ,kÕ)œI(i,k)

Ë
a[¸≠1]

(j)

È

iÕ,kÕ
. (average-pooling)

As is evident, max-pooling takes the maximal pixel value within the window as the output,
while average pooling averages pixel values within the window for the output.

x

2

6

7

8

4

�4

�2

3

10

3

0

�1

13

�2

�11

0

z

6

8

13

0

(a)

x

2

6

7

8

4

�4

�2

3

10

3

0

�1

13

�2

�11

0

z

2

4

6

�3

(b)

Figure 6.11: An example of pooling with a 2 ◊ 2 window. (a) Max-pooling. (b) Average-pooling.

228

i
i

i
i

i
i

i
i

6.4 Building a Convolutional Neural Network

The specifics of the pooling operation define exactly how I(i,k) is determined. Generally,
similar to the convolution operation and its alternations with stride and padding, we may
view pooling as moving a small window over the input to compute an output. The way in
which this window moves implicitly defines I(i,k). As a concrete example see Figure 6.11
which illustrates a case of pooling with a window of dimensions 2 ◊ 2. With this, |I(i,k)| = 4,
and then each output pixel (i, k) is computed based on all 4 pixels (iÕ, kÕ) œ I(i,k) from the
input image which form a 2 ◊ 2 window in a[¸≠1]

(j) . A typical pooling stride of the window
which covers all input pixels while forming non-overlapping windows is to shift each time
with the size of the window as in Figure 6.11. In general other pooling stride settings are
also possible.

The idea of pooling interplays with the notion that the initial layers of a convolutional
network focus on pixel level features similar to edge detection, and as we progress towards
the final layers of the network, the information is aggregated to address general questions
about the whole image. Thus deeper layers are less sensitive to translation changes on
the input image compared to the initial layers. For instance, the answer to a question “is
there a bird in the photo?” is the same for both images in Figure 6.5, even though the
corresponding outputs from the initial layers look di�erent. Pooling layers are applied after
convolutional layers to help achieve such aggregation by reducing the spatial dimension of
the outputs. In addition, the dimension reduction which pooling layers o�er is important
from a computational perspective.

We now return to the notion of a receptive field, previously discussed in the context of
dilation and with respect to a single convolution. Now we consider it in the context of a
whole network. In particular we consider the receptive field of a derived feature. Consider
a neuron in the network,

#
a[¸]

(j)
$

i,k
, for layer ¸, channel j, and pixel coordinates (i, k). This

neuron or activation is a derived feature inside the network. Using the dimensions and
specifications of the layers up to that neuron, namely 1, . . . , ¸, it can be determined which
input pixels from the input image x, a�ect the value of

#
a[¸]

(j)
$

i,k
. For example if the neuron

is at a first layer involving a 5 ◊ 5 convolution kernel, then the value of the neuron is only
determined by 25 pixels in the input image. However, if the layer ¸ is a hidden layers with
multiple convolutions and pooling layers prior to it, it may be that

#
a[¸]

(j)
$

i,k
is determined

by the whole input image x or a significant portion. In general, pooling layers help increase
the receptive field of neurons of hidden layers. This allows the derived features towards the
end of the network to depend on the whole input image, or significant parts of it.

Fully Connected Layers

When the ¸-th layer of the network is a fully connected layer then the operation of f (¸)
◊[¸]

(·) is
as in (5.2) of Chapter 5. Such layers are typically deployed at the end of the network. This
is because the typical task of the last layers of convolutional neural network is to address
general questions, such as classification of the objects in the image. Note that since fully
connected layers operate on vectors as the input, in cases where the previous layer has a
tensor as output, the tensor is flattened to a vector.

It is common to adapt the final fully connected layers of convolutional networks for specific
tasks. For example, the VGG19 model can have the final layers fine tuned for tasks such as
object localization discussed in Section 6.6. In doing so, we may take the network trained for
classification, and then fine tune it for the other task by only training the fully connected

229

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

layers. This is sometimes called freezing layers (the ones not trained) during training..
Similarly, convolutional networks that were trained on generic images from a general domain,
such as ImageNet, can be fine tuned by training the final layers on more specific images
from a specific domain (e.g., only on specific animal images of a certain type). This process,
also used in other non-convolutional models, is called transfer learning.

VGG19 Revisited

We now take a closer look at the architecture of our running example network, VGG19.
While this is not the most modern convolutional architecture, it is instructive to consider it
here since it falls directly within the paradigms discussed above. Other popular convolutional
architectures are surveyed in the next section. We have seen in (6.22) the counts of di�erent
layer types in VGG19 which has L = 24 layers of which 19 are trainable. Table 6.1 provides
complete details.

Each input to the network is a color image x of dimension M [0]
c ◊M [0]

h
◊M [0]

v = 3◊224◊224.
In the basic form we present here, the network is configured for a classification task with
K = 1, 000 classes. Thus, the output ŷ of the network is a probability vector of length 1, 000,
where the ith element, ŷi, denotes the probability of x is of class i œ {1, . . . , K}.

In this architecture all the convolutional kernels in the network are of the same dimension,
Kh ◊ Kv = 3 ◊ 3. The padding and stride settings are the same for all the convolutional
layers with (ph, pv) = (2, 2) for padding and (sh, sv) = (1, 1) for stride. There is no dilation,
i.e. (dh, dv) = (1, 1). With these settings, it is evident from (6.17) that for each convolutional
layer, the input height and width dimensions are identical to the output height and width
dimensions. Thus with this network, height and width dimensions are reduced only via
pooling. All the pooling layers are max-pooling using 2 ◊ 2 windows that are moved with
a stride of (2, 2) without padding. Thus each such pooling layer halves the height and
width dimensions. The dimensions start at 224 ◊ 224 and are halved using the sequence,
224, 112, 56, 28, 14, and 7. Yet as layers progress, more channels are added where we start
with 3 channels in the input and increase to 64 channels in the first layer. Then after some
of the pooling layers, we double the number of channels so that eventually by layer ¸ = 12
there are 512 channels.

We see from Table 6.1 that the tensor output of the 21st layer, which is a max-pooling
layer, is flattened to a vector that is given as an input to the first fully connected layer,
layer ¸ = 22; namely 512 ◊ 7 ◊ 7 = 25, 088. In terms of activation function, the architecture
uses the Rectified Linear Unit (ReLU) activation function for all the hidden trainable layers
and soft-max for the output layer so that each output assigns a probability to each of the
possible 1, 000 classes.

In the original VGG19 paper,10 the network was trained on the ImageNet dataset and
nowdays when one uses this network, one often uses a pretrained version. In the original
paper the input images were preprocessed by subtracting the mean red, green, and blue value,
computed over the entire ImageNet training set, from each pixel. This type of preprocessing
is needed in production (test time) as well. Note that in the original paper, to obtain the
input size 224 ◊ 224, input images were randomly cropped from rescaled training images, one

10The VGG19 architecture achieved state-of-the-art performance on the ImageNet classification task in
2014, with a top-5 error rate of 7.3%. This network is often used as a pre-trained model for transfer learning
tasks, where the lower layers are fixed and the higher layers are fine tuned for a specific task.

230

i
i

i
i

i
i

i
i

6.4 Building a Convolutional Neural Network

Table 6.1: Specifications of the VGG19 architecture. The number of learned parameters for the
covolutional layers is computed using (6.23). The number of learned parameters for a fully connected
layer with input size N

[¸≠1] and output size N
[¸] is N

[¸≠1] · N
[¸] + N

[¸]; see Section (5.1) for more
details on the learned parameters of fully connected layers.

Layer. Type of Layer Output Dimension No. of Neurons No. of Learned
No. Parameters
0 Input 3 ◊ 224 ◊ 224 - -
1 Convolution 64 ◊ 224 ◊ 224 3, 211, 264 1, 792
2 Convolution 64 ◊ 224 ◊ 224 3, 211, 264 36, 928
3 Max-pooling 64 ◊ 112 ◊ 112 802, 816 0
4 Convolution 128 ◊ 112 ◊ 112 1, 605, 632 73, 856
5 Convolution 128 ◊ 112 ◊ 112 1, 605, 632 147,584
6 Max-pooling 128 ◊ 56 ◊ 56 401, 408 0
7 Convolution 256 ◊ 56 ◊ 56 802, 816 295, 168
8 Convolution 256 ◊ 56 ◊ 56 802, 816 590, 080
9 Convolution 256 ◊ 56 ◊ 56 802, 816 590, 080
10 Convolution 256 ◊ 56 ◊ 56 802, 816 590, 080
11 Max-pooling 256 ◊ 28 ◊ 28 200, 704 0
12 Convolution 512 ◊ 28 ◊ 28 401, 408 1, 180, 160
13 Convolution 512 ◊ 28 ◊ 28 401, 408 2, 359, 808
14 Convolution 512 ◊ 28 ◊ 28 401, 408 2, 359, 808
15 Convolution 512 ◊ 28 ◊ 28 401, 408 2, 359, 808
16 Max-pooling 512 ◊ 14 ◊ 14 100, 352 0
17 Convolution 512 ◊ 14 ◊ 14 100, 352 2, 359, 808
18 Convolution 512 ◊ 14 ◊ 14 100, 352 2, 359, 808
19 Convolution 512 ◊ 14 ◊ 14 100, 352 2, 359, 808
20 Convolution 512 ◊ 14 ◊ 14 100, 352 2, 359, 808
21 Max-pooling 512 ◊ 7 ◊ 7 25, 088 0

Flattening to a vector of length 25, 088
22 Fully connected 4, 096 4, 096 102, 764, 544
23 Fully connected 4, 096 4, 096 16, 781, 312
24 Fully connected 1, 000 1, 000 4, 097, 000

Total: 16,391,656 Total: 143,667,240

crop per image per each iteration of the stochastic gradient descent optimization algorithm.
This type of data augmentation is further discussed in Chapter 8.

One by One Convolutions and Fully Convolutional Networks

A one by one convolutional layer is a special case of a convolutional layer where we apply
K [¸]

h
◊ K [¸]

v = 1 ◊ 1 dimensional kernel matrices on all the input channels. At first glance,
if one returns to the basics of two dimensional convolutions as in (6.7), it may seem like a
one by one convolution is nothing but a scalar multiplication. However, since now there are
K [¸]

c (or M [¸≠1]
c) channels at play, the one by one convolution allows us to create a linear

combination of the input channels. For example, in image processing when one converts a
red, green, and blue color image into a monochrome (black and white) image, one way to do

231

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

so is to define each monochrome pixel as a linear combination of the three color pixel values,
and this is a one by one convolution.

One obvious application of one by one convolutions is for the reduction of depth (number
of channels) inside convolutional neural networks without changing the spatial dimension.
Return to the VGG19 architecture in Table 6.1 and observe that from layer 0 to layer 21
depth either stays the same or grows (starting at 3 and reaching 512). However, in contrast
to VGG19 that flattens layer 21, say we wanted to have a layer, which we call a depth
reduction layer, straight after layer 21, which reduces the depth from 512 channels to a lower
number. This can be viewed as a non-linear projection of the 512 channels in layer 21 onto a
tensor of lower dimension with less channels. Clearly, one by one convolutions o�er a natural
way for such depth reduction where we set the number of one by one convolution kernels as
the desired number of output channels of the reduction layer. So for example in VGG19 if
we would have wanted layer 22 to be a tensor of dimension 8 ◊ 7 ◊ 7 instead of the fully
connected layer as in Table 6.1, then we would introduce 8 one dimensional convolutions for
that layer. The total parameter count for that layer would be 8 ◊ 512 + 8 = 4, 112, where
the additional +8 is for the bias term of each of the 8 one by one convolutions.

Importantly, one by one convolutions also allow us to represent fully connected layers as
convolutional layers. To see this, recall that a fully connected layer relies on an a�ne
transformation on some input vector, say x of length N , to obtain z = Wx + b, where W is
the weight matrix with N columns, and b is the bias vector. In that case, the j-th element
of z is,

zj =
1 Nÿ

i=1
Wj,i xi

2
+ bj . (6.24)

Now return to (6.21) and consider a one by one convolution on a volume x of dimension
N ◊ 1 ◊ 1. In this case x(i) can simply be represented as xi and the ı operation can be
replaced by multiplication. Omitting the superscript “[1]” in (6.21), we have,

z(j) =
1 Nÿ

i=1
W(j),(i) · xi

2
+ b(j). (6.25)

Hence, we see that the fully connected operation (6.24) and the one by one convolution
operation (6.25) are essentially identical.

In general a convolutional network that does not have fully connected layers and has all
trained weights and biases associated with convolutional layers is called a fully convolutional
network. In essence a non fully convolutional network such as VGG19 may be transformed
into a fully convolutional network by replacing the fully connected layers using one by one
convolutions. This process sometimes termed convolutionalization. For example for VGG19
this means transforming layers 22, 23, and 24, as in Table 6.1, into convolutional layers. There
are multiple reasons for convolutionalization and multiple advantages to fully convolutional
architectures. Primarily, the representation of fully connected layers as convolutional layers
allows us to stack multiple parallel outputs or intermediate channels in a single tensor.

Dropout, Batch Normalization, and Group Normalization

Some of the techniques introduced in Chapter 5 for fully connected neural networks are also
applicable in convolutional networks. We now discuss two such techniques, namely dropout

232

i
i

i
i

i
i

i
i

6.4 Building a Convolutional Neural Network

and batch normalization. We also highlight group normalization which is a variant of batch
normalization in the context of convolutional neural networks.

Recall from Section 5.7 that dropout is a simple regularization technique where during each
forward pass in the training, only a random subset of the neurons (randomly selected for
that iteration) is used. In convolutional networks, we can still employ dropout for the fully
connected layers but not for the convolutional layers. This is because in convolutional layers,
the neurons have spatial orientation, and dropping out individual neurons could disrupt the
spatial structure.

Batch normalization, introduced in Section 5.6, often accelerates learning. The key idea is
a shifting and scaling transformation using additional learned parameters as in (5.40) of
Chapter 5 which generally maintains the activation values in a dynamic range near 0. For
convolutional neural networks, batch normalization at a convolutional layer ¸ is usually
applied on each channel z[¸]

(j) of the convolution output z[¸] before the corresponding activation
is applied. That is, for two learned scalar parameters “[¸]

j
and —[¸]

j
, the jth channel matrix of

dimension M [¸]
h

◊ M [¸]
v after the is given by

z̃[¸]
(j) = “[¸]

j
z̄[¸]

(j) + —[¸]
j

, (6.26)

for each j = 1, . . . , M [¸]
c , where as before we use ‘+’ for addition of the scalar to every

element of the matrix. Here, the matrix being transformed has (iÕ, jÕ)-element [z̄[¸]
(j)]iÕ,jÕ that

is computed similar to (5.39) by subtracting the mean and then dividing it by the square-root
of the variance plus a small constant Á, where the mean and variance are computed for the
same element (iÕ, jÕ) of jth channel of the convolution output z[¸]

(j) over the entire mini-batch,
similar to (5.38).

A variant that has gained popularity is called group normalization. Here, instead of normal-
izing each channel (applying (6.26) on a standardized z̄[¸]

(j)), the channels of the convolution
output are divided into a set of groups, and then the mean and variance values are com-
puted for each group over a mini-batch and similarly a form of (6.26) is applied per-group.
Hence the learned parameters (“’s and —’s) are per group in a layer. Note that the group
normalization is identical to the batch normalization when the number of groups is equal to
the number of channels, but otherwise it reduces the number of learned parameters.

Understanding Inner Layers and Derived Features

Recall an elementary example from Section 2.2 where we estimated a simple linear regression
coe�cient —̂1 to have a value of 8.27. In that simple example, the interpretation of the
estimated parameter was clear: A unit increase of the feature implies an increase of the output
by 8.27. Thus with linear models, beyond using the model for prediction, the actual learned
parameters have meaning. Ideally, for deep learning models in general, and particularly
for convolutional neural networks, we would also like to have such an interpretation of the
learned parameters. Namely, what information do we know based on the learned convolution
kernels, weight matrices, and bias vectors. However, convolutional (and deep) models with

233

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

millions of parameters are much more involved, and simple direct interpretability is typically
not attainable.11

While direct interpretability is not possible, there are multiple techniques for visualizing
convolutional neural networks. We now briefly summarize some overarching approaches
which we dichotomize as either weight based or feature based. The weight based approach
focuses on visualizing the learned convolution kernels of the network. The feature based
approach focuses on the activation values in specific channels and has several variants.

Starting with the weight based approach, visualizing the weights of convolution kernels with
Kc at most 3 is possible just by treating the kernel as a red, green, and blue image and
displaying it. For many architectures this is possible at the first layer since the input has three
channels (hence Kc = 3). In fact, for many trained models, the color image visualization
of first layer convolution kernels shows that these filters are similar in nature to simple
engineered filters such as edge detectors. On the other hand, for layers down the network,
there are often more than three channels, and while we may try to use data reduction
techniques to visualize the associated filters (each with Kc > 3), such a visualization is
typically not fruitful.

Continuing to the feature based approach, we focus on the values of activations in specific
channels in the network. A simple mechanism is to apply di�erent categories of images and
examine which neurons or activations are most excited by which category. A slightly more
sophisticated feature based approach is via the application of occlusions (covering part of
the view). The basic idea is to first consider a non-occluded image, and then occlude the
image by covering up some interesting part such as a face of a person. We then compare the
di�erence in neuron activation values for the non-occluded and occluded inputs. Neurons
for which the di�erence in activation values is significant may then be interpreted as being
sensitive to the occluded part of the image (e.g. to a face).

All the aforementioned approaches are simple in the sense that they do not rely on an
additional model, but rather just use the trained model under study. However, there are
multiple approaches that execute additional optimization for better interpretability insights.
As an illustration, let us see one such approach stemming from a landmark paper.12 In
addition to the methodological contribution, the work of this paper also highlighted important
structural aspects of trained convolutional neural networks. Specifically, it was shown that
initial layers of the network generally seek simple visual features such as corners, colors, and
edges, while later layers of the network find much more refined artifacts such as faces, or
specific objects.

Consider Figure 6.12 which illustrates a visual interpretation of some channels within a
trained convolutional network. The network has many channels across multiple layers, and
here we present only a few of those channels, focusing on a pair of arbitrary channels within
each of the layers 2, 3, 4, and 5. Before we outline how the visualization in this figure was
created, let us interpret it. Each channel that we visualize has a 3 ◊ 3 grid of synthesized
images (channel visualization) as well as a matching 3 ◊ 3 grid of parts of images from a

11We mention that there is a whole field dealing with interpretable machine learning. In this subsection
our goal is to only present a glimpse of the area.

12See “Visualizing and Understanding Convolutional Networks” by M. Zeiler and R. Fergus, [441].
13Image is adapted from figure 2 of “Visualizing and understanding convolutional networks”, [441] with

thanks to M. D. Zeiler and R. Fergus.

234

i
i

i
i

i
i

i
i

6.4 Building a Convolutional Neural Network

Layer	2

Channel		
Visualization

Original		
Receptive	Field

Channel		
Visualization

Original		
Receptive	Field

Layer	3

Channel		
Visualization

Original		
Receptive	Field

Channel		
Visualization

Original		
Receptive	Field

Layer	4

Channel		
Visualization

Original		
Receptive	Field

Channel		
Visualization

Original		
Receptive	Field

Layer	5

Channel		
Visualization

Original		
Receptive	Field

Channel		
Visualization

Original		
Receptive	Field

Figure 6.12: Visualization of the meaning of channels of a trained model.13 We present two
arbitrary channels for each of layers, 2, 3, 4, and 5 and for each channel we see the 9 images
that yield the 9 highest activation values. The gray background images (channel visualization) are
processed via a deconvolution network from feature space back to pixel space. The original receptive
field color images are the associated receptive fields in the images that excite those activations. It
can be seen that initial layers search for more elementary features and layers deeper in the network
search for more refined features. Importantly, it appears like the type of features searched for in
each channel are generally homogenous (although this not always the case, as is evident with the
top channel presented for layer 5).

dataset (original receptive field). These channel visualizations and original receptive fields
can serve as a visual interpretation of what the specific channel detects.

For example, we see that the two channels visualized in layer 2 detect simple features with
one channel focusing on edges and another channel focusing on circles. As we advance deeper
in the network we see that the type of visual patterns detected are much more complex. For
example, the two channels presented for layer 4 detect parts of animals, and the channels
of layer 5 detect such representations as well. Note however, that one of the channels in
layer 5 that we present appears to detect either faces or car wheels even though these are
very di�erent objects. Hence any attempt to categorize channels based on their “meaning”
alone is far from absolute. Nevertheless, a visual representation such as that in Figure 6.12
can help to understand the function of individual channels within the network.

Let us now indicate how a visualization such as that in Figure 6.12 can be created. We
may focus on any arbitrary specific channel j in layer ¸. A validation set of images is
run though the network and for each image we consider the activation matrix a[¸]

(j) of
the channel. We compute ÷[¸]

(j) = maxi,k

#
a[¸]

(j)
$

i,k
, where the maximum is over the pixel

coordinates (i, k) œ {1, . . . , M [¸]
h

} ◊ {1, . . . , M [¸]
v }. We also keep the coordinates that attain

this maximum, denoted here via iú and kú. The idea is to find the neuron or activation, that
is maximally activated by each image in the validation set. Doing so for all images in the
validation set, we then take the 9 images that achieve the maximal ÷[¸]

(j) values and these
are the 9 images used for visualization of that channel. Now for each image out of those 9
images we take the coordinate (iú, kú) of the maximally activated neuron, and determine the
receptive field of that neuron within the input image. We then present the receptive field

235

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

part of the input image for each of the 9 images. This visualization then illustrates the 9
most significant image patches for the channel at question.

As for the channel visualization part (gray background images) of Figure 6.12, a more
sophisticated process is carried out on each of the 9 selected images per channel. A type
of network, called a deconvolution architecture is constructed in parallel to the original
convolutional network. This combined architecture enables transforming “feature space”
back to “pixel space” for individual input images and specific neuron locations. That is, an
input image to the original network is first processed. Then with a specific neuron (iú, kú) in
channel j of layer ¸, specified, the deconvolution architecture returns an image associated
with the receptive field of that particular neuron in “pixel space”. While we do not specify
the details of this particular deconvolution architecture, let us mention how it is used for
the channel visualization. Each gray background channel visualization image in Figure 6.12,
is an output in pixel space, resulting from the associated neuron, (iú, jú) in channel j of
layer ¸ specified to the deconvolution architecture. For this all other neurons in channel j of
layer ¸ are set to 0, except for [a[¸]

(j)]iú,kú which is activated. The deconvolution architecture,
then works backwards in the network from layer ¸ to layer ¸ ≠ 1, and back, all the way until
presenting the result in pixel space. The benefit of such channel visualization images, is that
they allow us to see how a single neuron [a[¸]

(j)]iú,kú “appears” in “pixel space”. Importantly,
we see that the 9 most activated neurons in the same channel, are generally of the same
nature.

6.5 Inception, ResNets, and Other Landmark Architectures
So far we covered the key components of convolutional neural networks and considered the
VGG19 model as one concrete network example. In this section we highlight other landmark
architectures within the world of convolutional neural networks. Our main goal is to highlight
ideas stemming from these architectures.

In general, the book avoids historical accounts as much as possible, yet in the context of
network architectures, some knowledge of the historical progression might be practically
useful. We thus begin with a brief historical account naming key architectures. We then
focus on three architectural ideas, namely the network within a network (inception network
also known as GoogLeNet), residual connections (ResNets), and e�cient model scaling as
in E�cientNet. See also the notes and references at the end of the chapter for further
information.

A Brief Historical Account

As with many ideas in deep learning, with convolutional networks one can find quite early
roots. In this case, early convolutional networks include the Neocognitron from the late
1970’s and early 1980’s and LeNet-5 worked on during the mid 1980’s until the late 1990’s.
Both of these networks already encompass many of the ideas presented in this chapter, yet
in those days computation power was lacking and ease of implementation with software was
much less advanced.

The architecture that really advanced deep learning as a whole, and particularly convolu-
tional neural networks is AlexNet from 2012. At the time, it was a breakthrough in image
classification, achieving state-of-the-art performance on the ImageNet dataset. The archi-

236

i
i

i
i

i
i

i
i

6.5 Inception, ResNets, and Other Landmark Architectures

tecture consists of five convolutional layers followed by three fully connected layers. It also
uses two parallel computation streams allowing the network to execute parallel forward
propagation and backpropagation, using two state of the art GPUs of the time. The work
on AlexNet also introduced several innovations that are now commonplace, such as the use
of ReLU activation functions and dropout regularization. While today, AlexNet is probably
not the first o�-the shelf model that one would use, it can still be cast as the first “modern
convolutional neural network”. From a research and applied perspective, it was the success of
AlexNet that sparked the start of the deep learning era. After the introduction and success of
AlexNet, hundreds (and now many thousands) of researchers, both applied and theoretical,
shifted focus towards deep learning. This heavy research e�ort accelerated advances in the
field.

Architectures that followed AlexNet include ZFNet in 2013, VGGNet (including VGG19) in
2014, GoogLeNet in 2014, and ResNet in 2015. This short sequence of advances marks the
main evolution of convolutional architectures to what they are today. In more recent years,
vision tasks have also been tacked by non-convolutional networks using transformers. For
such ideas see Chapter 7, describing transformers in the context of sequence or language
models, and see Chapter 8 where we highlight how ideas from di�erent deep learning
domains interplay. Nevertheless, convolutional networks remain the bread and butter of
modern computer vision. A recent advance that we cover below is E�cientNet. This set of
models tries to optimally scale models to balance performance and model size.

Inception and Networks within a Network

The inception network, also called GoogLeNet, works by composing multiple sub-networks
into a bigger network. This idea is sometimes called a network within a network. Each
sub-network is called an inception module and such a module uses multiple filter sizes in
parallel.

Previous
activations

1⇥ 1
Conv

1⇥ 1
Conv

3⇥ 3
Max-pooling

3⇥ 3
Conv

5⇥ 5
Conv

1⇥ 1
Conv

1⇥ 1
Conv

Channel concatenation

96 ⇥ 28 ⇥ 28

16 ⇥ 28 ⇥ 28

192 ⇥ 28 ⇥ 28

64⇥
28⇥

28

128 ⇥ 28 ⇥ 28

32 ⇥ 28 ⇥ 28

32
⇥ 28

⇥ 28

64

128

32
32

28 ⇥ 28

192 ⇥ 28 ⇥ 28

256 ⇥ 28 ⇥ 28

Figure 6.13: One form of an inception module, playing part in an inception network. The key idea
is parallel computation of various paths followed by a concatenating of the outputs from all paths.

237

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

Figure 6.13 illustrates an example of one such inception module. In this example a volume
of previous activations of dimension 192 ◊ 28 ◊ 28 is transformed to an output volume of
dimension 256◊28◊28 (the number of channels grows from 192 to 256). Inside the inception
module, there are four parallel paths, each operating independently and producing its own
set of output channels. Then the outputs of these paths are concatenated.

The di�erent paths of the inception module are designed to handle di�erent scales and
resolutions. The first path has 1 ◊ 1 convolutions and yields 64 output channels. The second
path has 1 ◊ 1 convolutions followed by 3 ◊ 3 convolutions. This path produces 128 output
channels (with an intermediate number of 96 channels). The third path is similar, yet uses
5 ◊ 5 convolutions instead of 3 ◊ 3. It results in 32 output channels with 16 intermediate
channels. Finally the last path starts with a max-pooling operation with a max pooling
stride of 1, such that there is no reduction in spatial dimension, but rather only a non-linear
operation. This is then followed by 1 ◊ 1 convolutions. This path results in 192 output
channels. All convolutions have ReLU activations and where needed, there is padding such
that the desired spatial dimensions are respected. It should be noted that when the inception
network was developed, mass experiments were conducted to seek near-optimal settings for
this inception module and similar ones.

The essence of the inception network is to interconnect such inception modules in series. The
concatenated channels that result as output from one module are given as input to the next
module. One aspect of this interconnection is that the number of channels generally grows
down the network. To mitigate such channel explosion, one by one convolutional layers are
placed between some of the inception modules. Such layers have been termed bottleneck
layers. Another aspect introduced with such networks was intermediate loss functions. Here
the idea is that in addition to the final loss function at the exit of the network, the loss is
also computed at various intermediate “exit points” and the gradient based optimization
uses the sum of all loss functions.

Empirically, in 2014, the introduction of GoogLeNet outperformed other networks at the
time and importantly these types of networks appear to strike a balance between accuracy
and computational e�ciency. The original GoogLeNet has about 6.8 million parameters and
this is much less than the 143.7 million parameters of VGG19. GoogLeNet can be viewed
as having 22 parameterized layers with a total of 9 inception modules, two convolutional
layers as initial layers, and only a single dense layer at the output. Practically, these days
when one wishes to use an o� the shelf trained convolutional neural network, some variant
of GoogLeNet is often a prime choice.

Residual Connections

Recall early discussions in Section 2.5, and in particular Figure 2.9. There we claimed that
in general, as model complexity grows we expect training error to decrease simply because
our model is able to capture more complex relationships. With deep learning one would also
hope to see this type of phenomena when adding layers. However, this is only partially true.
Empirically it has been observed that when deep learning models get extremely deep with
dozens or hundreds of layers, training error actually starts to increase. In other words, as
we add more layers to a neural network, its training error initially decreases, but after a
certain depth, the network’s accuracy on the training set starts to saturate and sometimes
degrades. One reason for this phenomenon, which is often termed a degradation problem,
stems from vanishing and exploding gradient issues. When a gradient is backpropagated

238

i
i

i
i

i
i

i
i

6.5 Inception, ResNets, and Other Landmark Architectures

through multiple layers, it can become extremely small, causing the weights in the earlier
layers to receive almost no updates during training. As a result, the network’s ability to
learn and generalize is reduced. See Section 5.4 for a discussion of vanishing and exploding
gradients.

Some further insight into the computational problems for very deep models is as follows.
We may hypothesize that good parameters, ◊[¸], for layer ¸, are such that the operation of
the layer f [¸]

◊[¸]
(·) is approximately an identity. Namely the input to the layer, a[¸≠1], and the

output, a[¸], are ideally very similar. This can be hypothesized because with deep models
we would expect individual layers to only apply minor variations on their inputs. If we
accept such an hypothesis then we immediately get insight into some of the numerical
and computational problems that learning entails. Specifically, learning functions close to
f [¸]

◊[¸]
(u) = u is often not trivial - for example consider a pure convolutional layer and observe

that for it to be an identity function the convolution kernel requires to be all zeros except for
a single entry that is 1. For this, iterating over parameters of convolutional layers until they
become close to identity requires many gradient descent steps and can run into numerical
problems.

ReLU

+

Convolution

ReLU
Convolution

u = a[`]

a[`+
˜̀]

r(u)

Figure 6.14: A shortcut connection (residual connection) as part of a residual network.

An approach to overcome this problem is to use shortcut connections as in Figure 6.14. Here
the key idea is to take the input before a given layer (or sequence of layers), and bypass
the layer (or the sequence of layers). Then the bypassed information is added to the output
down the network, typically before the application of an activation function. Note that as

239

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

we bypass layers, it may be that channel dimensions are di�erent. In such a case, we use one
by one convolutions, and similarly we may use padding, stride, and pooling to adjust the
spatial dimensions if needed.

Mathematically, and continuing with the hypothesis that layers should be close to identity
functions, we may view the shortcut connection approach as a means to set the bypassed layer
(or layers) to a function that approximately outputs zero. To see this return to Figure 6.14
and assume that r(u) ¥ 0. This then makes the operation of the whole sequence of layers
with a bypass close to the identity. Specifically in the figure we bypass ˜̧ layers, and if
r(u) ¥ 0, then a[¸+˜̧]

¥ a[¸]. Due to this reason the shortcut connections are also sometimes
called residual connections and the whole architecture is called a ResNet. The usage of the
term, “residual” implies that by adding a shortcut connection, we are now learning r(u) to
as a deviation from zero, or a residual.

When the ResNet idea was introduced in 2015, networks of depths of dozens and even more
than one hundred layers were able to be e�ciently trained. This elegant and simple idea
allows us to learn residuals instead of actual transformations. Ideas from ResNets propagated
to other aspects of deep learning beyond convolutional neural networks, such as for example
some sequence models presented in the next chapter. There are also models that combine
residual connections and inception modules, and these models are near the state of the art
of convolutional neural networks.

E�cientNet Models

E�cientNet is a family of convolutional neural network architectures that were developed with
the aim of providing better accuracy and e�ciency in terms of model size and computation
cost. The key idea is to systematically scale up the dimensions of the network’s parameters
(such as depth, width, and resolution) in a balanced way, while also introducing a new
compound scaling method that optimizes these dimensions based on a set of pre-defined
constraints. This allows users to choose which form of E�cientNet model they want, in a
way that balances the number of parameters and the performance of the model. Figure 6.15
plots the parameter count vs. performance tradeo�s of e�cient net models. The models
are named B0, B1, . . .,B7 where B0 is the most lightweight model in terms of parameter
counts, and B7 is the most computationally demanding model. It is seen that E�cientNet
dominates other popular models.

6.6 Beyond Classification
The sections above focus on the internals of convolutional neural networks. For simplicity in
those sections, we discuss the task of image classification, e.g. determining if an image is
that of a cat or a dog. However, there are several other important image analysis tasks that
are also handled with convolutional neural networks. These tasks deal with analysis and
understanding of an image including the location of objects, the count of objects, separating
between di�erent semantic features of the image, and more. Our purpose in this section is to
highlight such tasks. For this we present a brief overview of key computer vision developments
that use convolutional neural networks for tasks beyond classification.

14Image thanks to M. Tan and Q. V. Le, taken from “E�cientNet: Rethinking Model Scaling for
Convolutional Neural Networks”, [395]. See also [396].

240

i
i

i
i

i
i

i
i

6.6 Beyond Classification

Figure 6.15: Performance of various convolutional models as well as e�cient net.14

In terms of the input data, it is important to keep in mind that not all data is of the form of
monochrome or color images. Within computer vision, one often deals with image sequences
(short movies), or images that have more than 3 channels. For example, some images may
also have a distance channel capturing the distance from the camera per pixel. Further,
non-image data can also be handled via convolutional networks. One such example is fMRI
(functional magnetic resonance imaging) data which is 4 dimensional in nature as it records
the state of physical locations in three dimensions over time. Nevertheless, most of our
attention in this section is restricted to images.

Convolutional Networks and Key Computer Vision Tasks

As mentioned above, classification serves as a simple and useful example. For an input
image x, a convolutional neural network f◊(·), has output ŷ = f◊(x) which is a vector of
probabilities where the highest probability typically determines the appropriate label for the
image. As was evident from our detailed study of the VGG19 model in Section 6.4 and other
architectures of Section 6.5, initial layers of the model f◊(·) are typically convolutional, and
the final layers are typically fully connected layers. These final layers help transform the
internal derived features in the network into the output vector of probabilities ŷ. When one
considers tasks other than classification, it is often common to replace the final layers of
the network with other layers such that the output ŷ suites the desired task. With such a
replacement we typically keep in the initial layers as is.

15Image (b) is thanks to J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, taken from “You only look
once: Unified, real-time object detection”, [346]. Image (c) is thanks to H. Lai, S. Xiao, Y. Pan, Z. Cui,
J. Feng, C. Xu, J. Yin, and S. Yan, taken from “Deep recurrent regression for facial landmark detection”,
[246]. Image (d) is attributed to B. Palac under the creative commons license and available via Wikimedia

241

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

(a) (b)

(c) (d)

(e) (f)

Figure 6.16: Illustrations15 of some common computer vision tasks beyond classification: (a)
Object localization. (b) Object detection. (c) Landmark detection. (d) Semantic segmentation. (e)
Instance segmentation. (f) Identification (face recognition).

Let us now get a feel for some of these tasks and in each case consider some possible
structure for the output ŷ. Figure 6.16 illustrates key computer vision tasks for images. In
(a) we see object localization which is the task of identifying the location of an object in an
image, as well as possibly the type of object in which case the task is called localization and
classification. In (b) we see object detection which is the task of detecting multiple instances
of an object in an image, also separating between the objects and classifying their type. In
(c) we see landmark detection which is the task of identifying the specific pixel locations
of landmarks in an image. In (d) we see semantic segmentation which is the process of

Commons. Image (e) is thanks to K. He, G. Gkioxari, P. Dollár, and R. Girshick, taken from “Mask R-CNN”,
[170].

242

i
i

i
i

i
i

i
i

6.6 Beyond Classification

classifying each individual pixel to be of a di�erent class from a finite set of classes (pixel
wise classification). In (e) we see instance segmentation which finds di�erent instances of
objects in the image and separates pixels to be of di�erent instances. Finally, in (f) we see
the task of identification or more specifically face recognition which determines if an image
is that of a specific instance (or person).

Let us now consider possible forms of the output ŷ. For object localization, (a) in Figure 6.16,
ŷ needs to contain information about a bounding box which locates the object. This can be in
the form of (ŷx, ŷy, ŷh, ŷw) where ŷx and ŷy are the coordinates of (say) the upper left corner
of the bounding box and ŷh, ŷw are the height and width of the bounding box, respectively.
This information can also be augmented with probabilities for the respective classes (types of
objects) including the possibility of having no object. For object detection, (b) in the figure,
a collection of multiple bounding boxes needs to be supplied. For (c), landmark detection,
a list of coordinates of the locations of landmarks comprises the output. For (d) semantic
segmentation, each pixel location in the input image, x, has an associated probability vector
of classes in the output ŷ. Hence in this case, ŷ can be represented as a tensor with width
and height dimensions the same as the input image, and a depth dimension which is the
number of classes in the segmentation. For (e), instance segmentation, the output is similar
to that of semantic segmentation, but instead of recording probabilities of classes, the depth
dimension of the output ŷ is used for determining the specific instance of any given pixel.
Finally, in the case of identification, or face recognition, as in (f) of Figure 6.16, the output
is often just a probability as in a binary classifier, since the task is to determine if a face
image matches a given pre-stored template or not. Note that in this case, the input x is
typically composed of two images, where one image, say xa, is the template of the person
(e.g. a stored image in a security database), and the other image, say xo, is the other image.

There are many ideas that have gone into developing architectures for handling tasks (a) –
(f). Some of these ideas stem from vision analysis research, prior to the era of deep learning,
while other ideas evolved in parallel to deep learning in recent years. Object localization
and classification as in (a) is a particularly simple example and for this we provide more
details below. Similarly, identification (face recognition) is also worth consideration and
we provide more details below. Landmark detection (c) is handled easily also in a similar
spirit to object localization and classification; we omit the details. The other tasks including
object detection (b), semantic segmentation (d), and instance segmentation (e), are each big
topics of their own and we leave investigation of these for further reading. See the notes and
references at the end of the chapter.

Object Localization

To get a feel for object localization assume that we wish to train a convolutional neural
network that operates on an input image x and determines if the image contains a bird

or a plane (classification). The model’s second goal is to determine the specific location
(ŷx, ŷy, ŷh, ŷw) of that object (localization). Images with multiple birds or planes are not
considered. Images without a bird and without a plane are possible and in this case the output
yields nothing. One way to encode the output is ŷ = (p̂nothing, p̂bird, p̂plane, ŷx, ŷy, ŷh, ŷw),
where as in standard classification examples (p̂nothing, p̂bird, p̂plane) is a probability vector,
and the other coordinates define a bounding box.

Here an output that has p̂nothing greater than each of p̂bird and p̂plane implies a prediction of
no bird and no plane. On the contrary if p̂bird is the highest probability then the output

243

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

implies there is a bird, located in the bounding box (ŷx, ŷy, ŷh, ŷw). Similarly for the other
class, plane.

In terms of training data, for each input image we denote the output as y where images
without a bird or a plane are labeled as, y = (1, 0, 0, ÿ, ÿ, ÿ, ÿ), where ÿ are “do not care”
values. Images with a bird are labeled as y = (0, 1, 0, yx, yy, yh, yw) where the bounding
box (yx, yy, yh, yw) is typically based on a manual determination by a human annotator.
Similarly, images with a plane are labeled as y = (0, 0, 1, yx, yy, yh, yw).

We now construct a loss function that captures closeness of ŷ and y. For this we first
separate the classification and localization objectives into a loss Cclassification(◊ ; ŷ, y) and
Clocalization(◊ ; ŷ, y). The former depends only on the probability components in ŷ and y, and
the latter depends only on the bounding box components in ŷ and y. For the classification
loss, we use categorical cross entropy as in (3.31). For the localization loss, we use a mean
squared error as in (2.12) or some variant, applied to the four bounding box components.

The two separate losses are then combined such that the loss for a specific observation is,

Cclassification(◊ ; ŷ, y) + “ · (1 ≠ y1) · Clocalization(◊ ; ŷ, y),

where “ > 0 is a hyper-parameter used to weigh the two losses and taken as “ = 1 by default.
Observe that y1 = 1 when the label is nothing and is otherwise 0 and thus for labels in the
training data without a bird or a plane only the classification objective is used.

To perform object localization, say with a model like VGG19, the network can be modified
by adding additional layers at the end of the architecture to predict the coordinates of the
bounding box. This can be achieved by attaching a regression head to the output of the final
convolutional layer of the network. The regression head consists of fully connected layers
that predict the coordinates of the bounding box. Such simple modifications of networks
that were otherwise designed for classification are always possible.

Face Recognition, Siamese Networks, and Triplet Loss

Let us get a feel for how identification (face recognition) as in Figure 6.16 (f) can be
implemented both in production and training. First let us consider the simplified use of
such a task. Say a face identification system needs to be able to recognize faces where in
production one may have an anchor face image xa stored. With each use, the anchor needs
to be compared to another image xo. For example every “login” is based on a new xo image
and the system needs to determine if xo is of the same person as xa or not. In contrast to
other tasks discussed in the book, here we do not have the ability to train a network for a
particular person (or face), and similarly we do not have many di�erent face images of the
same person. Hence this setup requires a slightly di�erent architecture.

One type of architecture useful for this task is a siamese network, illustrated schematically
in Figure 6.17. The idea is that two parallel replicas of a convolutional neural network f◊(·)
are used, one applied on xa and the other on xo. The output of each of these networks is an
embedding vector. Now since we have two embedding vectors, f◊(xa) and f◊(xo), we can
compare them and see if they are likely associated with face images of the same person or not.
One approach for this comparison is as in Figure 6.17 using a comparison network, fc

◊c
(·, ·)

for binary classification (output is a probability) with parameters ◊c. Hence in production we
can determine, same if the output probability fc

◊c
(f◊(xa), f◊(xa)) is greater than a threshold,

244

i
i

i
i

i
i

i
i

6.6 Beyond Classification

xa
✓

f✓(xa)

xo
✓

f✓(xo)

Comparision

fc✓c(·)

Same/Different

Figure 6.17: A schematic of a siamese network architecture for identification (face recognition).
The two parallel convolutional neural networks both share the same parameters ◊, and one operates
on xa while the other operates on xo. The outputs of these networks are embedding vectors. These
are then compared via a comparison module which may be a neural network with parameters ◊c

and has output indicating if same or different.

or otherwise determine different. The comparison network is not too complex, and is
often a shallow logistic regression model or similar. With such an architecture, the learned
parameters ◊ and ◊c are not designed for one particular face, but rather for any possible
face.

Let us describe a simplified approach for training such a model. We can first treat the
parameters ◊ as known, say from a pertained or fine tuned model, and focus on learning the
parameters of the (smaller) comparison network ◊c. For this, the training data can be of the
form, D =

)
(x(1)

a , x(1)
o , y(1)), . . . , (x(n)

a , x(n)
o , y(n))

*
, where each tuple (x(i)

a , x(i)
o , y(i)), has an

anchor image x(i)
a , another image x(i)

o , and a binary label y(i)
œ {0, 1} with the value based

on the images being different (0) or same (1). With such a dataset all that is required is
to train the binary classifier fc

◊c
(·).

A related useful concept for training siamese networks is the triplet loss. Say for simplicity that
now our goal is to learn ◊ for f◊(·), ignoring the comparison network. For this we can setup a
slightly di�erent dataset of the form Dtriplet =

)
(x(1)

a , x(1)
d

, x(1)
s), . . . , (x(n)

a , x(n)
d

, x(n)
s)

*
where

now each (x(i)
a , x(i)

d
, x(i)

s) has an anchor face image x(i)
a as before, and also has two additional

images with x(i)
d

being a face image of a di�erent person, and x(i)
s being a face image of the

same person (not the exact same image as x(i)
a). Now by applying f◊(·) on each element of

this dataset, we can construct a loss function for observation i as,

Ci(◊ ; x(i)
a

, x(i)
s

, x(i)
d

) = max
)

Îf◊(x(i)
a

) ≠ f◊(x(i)
s

)Î2
¸ ˚˙ ˝

dsame

≠ Îf◊(x(i)
a

) ≠ f◊(x(i)
d

)Î2
¸ ˚˙ ˝

ddi�erent

+–, 0
*

, (6.27)

where – > 0 is some hyper-parameter called the margin and the Euclidean norm Î · Î can in
principle be replaced by a di�erent distance metric as well.

245

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

Let us understand the motivation behind the triplet loss (6.27). Our desire is that the
embedding associated with the anchor image x(i)

a and embedding associated with the image
of the same person x(i)

s be close to each other and hence dsame should ideally be small.
Similarly we wish to have the embedding of x(i)

a and the embedding x(i)
d

to be distant from
each other and this motivates the negative sign in front of the ddi�erent term which we ideally
want to be large.

Now in general, when we have such an optimization with two competing criteria, dsame
which we want to be small, and ddi�erent which we want to be large, one approach to capture
such a desire via a loss, is by pre-determining a margin – and considering cases where,

dsame ≠ ddi�erent Æ ≠–, (6.28)

as being “admissible” and otherwise “inadmissible”. We can then assign a loss of 0 to
admissible cases, and assign a loss that depends on ◊ for the inadmissible cases. This
is achieved with the max{·, 0} operation since if (6.28) is satisfied, the loss in (6.27) is
0. In contrast, when (6.28) is not satisfied (inadmissible), the loss in (6.27) is dsame ≠

ddi�erent + –. Hence when using gradient descent based learning of ◊ for minimization ofq
n

i=1 Ci(◊ ; Dtriplet), at any iteration, we drive loss down for the inadmissible observations.

The triplet loss with a properly curated dataset Dtriplet has been e�ectively used for state
of the art face recognition training. We note that when curating this dataset it is often
important to preprocess the images so that x(i)

a and x(i)
d

are not acutely di�erent. We also
note that with the use of the triplet loss we can add a comparison network fc

◊c
(·) which is

trained as a binary classifier, after training ◊ with the triplet loss. In other cases, using the
cosine distance between the two embedding vectors f◊(xa) and f◊(xo) su�ces in production.

246

i
i

i
i

i
i

i
i

6.6 Beyond Classification

Notes and References
Before we outline notes and references associated with explicit details of this chapter, here is a brief
description of early convolutional neural network developments. Initial ideas originated in the 1950’s
and 1960’s with the study of the visual cortices of animals, primarily by Hubel and Wiesel over a
series of publications including [195] and [196]. Early concrete models that have some similarity
with modern convolutional neural networks are the 1980 neocognitron [127] for pattern recognition,
as well as the 1988 time delay neural network [247] for speech recognition. In the 1990s convolutional
neural networks saw industrial applications for the first time with [154] for handwritten character
recognition and [65] for signature verification. Other significant early works include [250] for written
digit recognition, [402] for face recognition, and [412] for phoneme recognition. Finally we mention
that the LeNet-5 model developed in the late 1990’s by Yann LeCun et al. [252] is recognized as an
early form of contemporary convolutional neural networks and it was used for classifying 28 ◊ 28
size images of grayscale handwritten digits. We also mention that in 1989 with [250] and [251],
LeCun et al. developed the first multi-layered convolutional networks for handwritten character
recognition trained using backpropagation.

The structure of convolutional layers in neural networks as we present in this chapter solidified at
around the 2012–2016 period and best fits the VGG model [380]. This model followed the pivotal
AlexNet model [239] from 2012 which was specifically designed for training on two parallel GPUs.
Other notable convolutional architectures of this period are the GoogLeNet or inception network
model of [394], the batch normalization inception model [203] which uses batch normalization of
layer inputs, and ResNets which were introduced in [172]. All of these models competed in the
ImageNet challenges of that era with the results from each model e�ectively outperforming those
that came prior to it. Other developments included the SqueezeNet model of [199], which marked a
key milestone in reducing parameter size and memory footprint of convolutional network without
compromising accuracy; this model achieved the AlexNet-level accuracy with much fewer parameters
and a much smaller memory footprint. Also, see the Network-in-Network model of [260] which
inspired the inception networks and [388] that uses dropout mechanism to reduce overfitting on
convolutional layers. See [344] for a comprehensive survey of convolutional neural networks of
that time as well as the more recent survey [258]. In times closer to the publication of this book,
paradigms such as E�cientNet appeared in [395], see also the more recent version, E�cientNet v2
in [396].

Ideas of dilation in convolutional networks were introduced in [435] for dense prediction, where the
goal is to compute a label for each pixel in the image. Furthermore, dilation for residual networks is
introduced in [436]. See also the discussion of group normalization in [426].

A general overview of linear time invariant systems can be found in standard texts such as [244] which
is also useful for understanding basic filtering. The book [14] can provide a more mathematically
rigorous foundation and can also be useful for understanding the delta function in continuous time.
The probabilistic interpretation of a convolution is standard and can be found in any elementary
probability textbook such as [355]. The multiplication of polynomials interpretation, also coupled
with the study of the fast Fourier transform can be found in [93]. A simple explanation of the
representation of discrete convolutions in terms of Toeplitz matrices can be found in [56]. For
analysis of convolutions of classic image processing applications as well as many other classic image
processing techniques see [207]. The Sobel filter is one of many convolution based filtering operations.
It was developed by Sobel and Feldman, and presented at a 1968 scientific talk; see [383] for an
historical review.

The rise of convolutional neural networks drove the development of many paradigms using these
networks for di�erent tasks. In terms of object detection, early works are [135] and [136] and recent
work in this direction is [415] where YOLOv7 model enhances the landmark YOLO (you only look
once) work of [346]. A recent survey on object detection can be found in [454]. The important area
of semantic segmentation has received much attention with notable papers being [352] (U-net),
as well as [312]. Instance segmentation is studied in [45], [170], and [267]. For additional recent
surveys of the subsequent developments in semantic and instance segmentation see [405] and [290].
See also [129] for a survey of video semantic segmentation. Influential work on identification (face
recognition) is in [368] and early ideas of siamese networks are from [84]; see also [192] and [425].

Over the years, many e�ective network visualization methods were developed for understanding
inner layers and derived features. Before the era of great popularity of convolutional networks, the

247

i
i

i
i

i
i

i
i

6 Convolutional Neural Networks - DRAFT

work in [119] introduced a technique aimed at optimizing the input to maximize the activity of
hidden neurons in a deep neural network. For convolutional neural networks, the deconvolution
architecture in [441], based on previous work in [442], was a significant as it was the first work where
e�ective visualization of internal layers was made possible. Other related important papers in this
direction are [278] which introduced a technique called network inversion and [23] which introduced
a framework called network dissection. A general useful survey on visual interpretability for deep
learning is [447]. Other related ideas that we do not discuss in this book include deep dreaming16

and directly using convolutional networks for neural style transfer, initially introduced in [131], and
further developments reported in [113]. See also the related generative models of Chapter 8.

In terms of real world applications, these days convolutional neural networks are used in many
scenarios. For image classification applications of convolutional neural networks, see for example
[372] dealing with tra�c sign recognition, and [256] for medical image classification, among many
others. For a review of advances in image classification, refer to [76]. The most basic application of
convolutional neural networks is with 3-dimensional tensors as appropriate for color images, yet
there are other cases as well. In [450] 4-dimensional fMRI data is studied. Also videos are analyzed
in [221] by treating the entire video as a bag of short clips. In particular, see [122], [379], and
[416] for video-based action recognition; a brief summary of such methods is listed in [434]. In
general, techniques for analyzing video data vary depending on the task at hand; see [373] for a brief
survey of such tasks and the corresponding methods. We also mention that transformer models, as
introduced in Chapter 7 have been applied to images and managed to surpass the performance of
convolutional networks in certain cases when trained with huge datasets. See [227] for a survey as
well as the notes and references at the end of Chapter 7.

16This blog post is credited for introducing the concept of deep dreaming: https://blog.research.
google/2015/06/inceptionism-going-deeper-into-neural.html.

248

https://blog.research.google/2015/06/inceptionism-going-deeper-into-neural.html
https://blog.research.google/2015/06/inceptionism-going-deeper-into-neural.html

	Preface - DRAFT
	Introduction - DRAFT
	The Age of Deep Learning
	A Taste of Tasks and Architectures
	Key Ingredients of Deep Learning
	DATA, Data, data!
	Deep Learning as a Mathematical Engineering Discipline
	Notation and Mathematical Background
	Notes and References

	Principles of Machine Learning - DRAFT
	Key Activities of Machine Learning
	Supervised Learning
	Linear Models at Our Core
	Iterative Optimization Based Learning
	Generalization, Regularization, and Validation
	A Taste of Unsupervised Learning
	Notes and References

	Simple Neural Networks - DRAFT
	Logistic Regression in Statistics
	Logistic Regression as a Shallow Neural Network
	Multi-class Problems with Softmax
	Beyond Linear Decision Boundaries
	Shallow Autoencoders
	Notes and References

	Optimization Algorithms - DRAFT
	Formulation of Optimization
	Optimization in the Context of Deep Learning
	Adaptive Optimization with ADAM
	Automatic Differentiation
	Additional Techniques for First-Order Methods
	Concepts of Second-Order Methods
	Notes and References

	Feedforward Deep Networks - DRAFT
	The General Fully Connected Architecture
	The Expressive Power of Neural Networks
	Activation Function Alternatives
	The Backpropagation Algorithm
	Weight Initialization
	Batch Normalization
	Mitigating Overfitting with Dropout and Regularization
	Notes and References

	Convolutional Neural Networks - DRAFT
	Overview of Convolutional Neural Networks
	The Convolution Operation
	Building a Convolutional Layer
	Building a Convolutional Neural Network
	Inception, ResNets, and Other Landmark Architectures
	Beyond Classification
	Notes and References

	Sequence Models - DRAFT
	Overview of Models and Activities for Sequence Data
	Basic Recurrent Neural Networks
	Generalizations and Modifications to RNNs
	Encoders Decoders and the Attention Mechanism
	Transformers
	Notes and References

	Specialized Architectures and Paradigms - DRAFT
	Generative Modelling Principles
	Diffusion Models
	Generative Adversarial Networks
	Reinforcement Learning
	Graph Neural Networks
	Notes and References

	Epilogue - DRAFT
	Some Multivariable Calculus - DRAFT
	Vectors and Functions in Rn
	Derivatives
	The Multivariable Chain Rule
	Taylor's Theorem

	Cross Entropy and Other Expectations with Logarithms - DRAFT
	Divergences and Entropies
	Computations for Multivariate Normal Distributions

	Bibliography
	Index

