
i
i

i
i

i
i

i
i

Mathematical Engineering
of Deep Learning

Book Draft

Benoit Liquet, Sarat Moka and Yoni Nazarathy

February 28, 2024

i
i

i
i

i
i

i
i

Contents

Preface - DRAFT 3

1 Introduction - DRAFT 1
1.1 The Age of Deep Learning . 1
1.2 A Taste of Tasks and Architectures . 7
1.3 Key Ingredients of Deep Learning . 12
1.4 DATA, Data, data! . 17
1.5 Deep Learning as a Mathematical Engineering Discipline 20
1.6 Notation and Mathematical Background . 23
Notes and References . 25

2 Principles of Machine Learning - DRAFT 27
2.1 Key Activities of Machine Learning . 27
2.2 Supervised Learning . 32
2.3 Linear Models at Our Core . 39
2.4 Iterative Optimization Based Learning . 48
2.5 Generalization, Regularization, and Validation 52
2.6 A Taste of Unsupervised Learning . 62
Notes and References . 72

3 Simple Neural Networks - DRAFT 75
3.1 Logistic Regression in Statistics . 75
3.2 Logistic Regression as a Shallow Neural Network 82
3.3 Multi-class Problems with Softmax . 86
3.4 Beyond Linear Decision Boundaries . 95
3.5 Shallow Autoencoders . 99
Notes and References . 111

4 Optimization Algorithms - DRAFT 113
4.1 Formulation of Optimization . 113
4.2 Optimization in the Context of Deep Learning 120
4.3 Adaptive Optimization with ADAM . 128
4.4 Automatic Di�erentiation . 135
4.5 Additional Techniques for First-Order Methods 143
4.6 Concepts of Second-Order Methods . 152
Notes and References . 164

5 Feedforward Deep Networks - DRAFT 167
5.1 The General Fully Connected Architecture 167
5.2 The Expressive Power of Neural Networks 173
5.3 Activation Function Alternatives . 180
5.4 The Backpropagation Algorithm . 184
5.5 Weight Initialization . 192

7

i
i

i
i

i
i

i
i

Contents

5.6 Batch Normalization . 194
5.7 Mitigating Overfitting with Dropout and Regularization 197
Notes and References . 203

6 Convolutional Neural Networks - DRAFT 205
6.1 Overview of Convolutional Neural Networks 205
6.2 The Convolution Operation . 209
6.3 Building a Convolutional Layer . 216
6.4 Building a Convolutional Neural Network 226
6.5 Inception, ResNets, and Other Landmark Architectures 236
6.6 Beyond Classification . 240
Notes and References . 247

7 Sequence Models - DRAFT 249
7.1 Overview of Models and Activities for Sequence Data 249
7.2 Basic Recurrent Neural Networks . 255
7.3 Generalizations and Modifications to RNNs 265
7.4 Encoders Decoders and the Attention Mechanism 271
7.5 Transformers . 279
Notes and References . 294

8 Specialized Architectures and Paradigms - DRAFT 297
8.1 Generative Modelling Principles . 297
8.2 Di�usion Models . 306
8.3 Generative Adversarial Networks . 315
8.4 Reinforcement Learning . 328
8.5 Graph Neural Networks . 338
Notes and References . 353

Epilogue - DRAFT 355

A Some Multivariable Calculus - DRAFT 357
A.1 Vectors and Functions in Rn . 357
A.2 Derivatives . 359
A.3 The Multivariable Chain Rule . 362
A.4 Taylor’s Theorem . 364

B Cross Entropy and Other Expectations with Logarithms - DRAFT 367
B.1 Divergences and Entropies . 367
B.2 Computations for Multivariate Normal Distributions 369

Bibliography 399

Index 401

8

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

Many forms of data such as text data in the context of natural language processing appear
sequentially. In such a case we require deep learning models that can operate on sequences
of arbitrary length, and are well adapted to model temporal relationships in the data. The
simple first model of this form is the recurrent neural network (RNN) which can be presented
as a variation of the feedforward neural network of Chapter 5. In this chapter we explore
such models together with many more advanced variants of these models including long
short term memory (LSTM) models, gated recurrent unit (GRU) models, models based on
the attention mechanism, and in particular transformer models. An archetypical application
is end to end natural language translation and we see how encoder-decoder architecture
with sequence models can be used for this purpose. The various forms of models including
RNN, LSTM, GRU, or transformers can also be used in such an application among others.
These models also form the basis for large language models (LLMs) that have shown to be
extremely powerful for general tasks.

In Section 7.1 we consider various forms and application domains of sequence data. As a
prime example we consider textual data and ways of encoding textual data as a sequence.
In Section 7.2 we introduce and explore basic recurrent neural networks which are naturally
suited to deal with sequence data. We present the basic auto-regressive structure of such
models and discuss aspects of training. In Section 7.3 we explore generalizations of recurrent
neural networks including, stacking and reversing approaches, and importantly long short
term memory (LSTM) models, and gated recurrent unit (GRU) models. Prior to the
appearance of transformers, LSTMs and GRUs marked the state of the art for sequence
modelling. We continue in Section 7.4 where we focus on machine translation applications,
and explore how encoder-decoder architectures can be used for end-to-end translation. In the
process we introduce the attention mechanism which has become a central pillar of modern
sequence models. An encoder-decoder architecture based on attention is also presented. In
Section 7.5 we dive into the powerful workhorse of contemporary sequence models, the
transformer architecture. Transformers, relying heavily on attention, are presented in detail,
culminating with a transformer encoder-decoder architecture.

7.1 Overview of Models and Activities for Sequence Data
Sequence models have been motivated by the analysis of sequential data including text
sentences, time-series, and other discrete sequence data such as DNA. These models are
especially designed to handle sequential information while convolutional neural networks
of Chapter 6 are specialized for processing spatial information. Naturally, most interesting
input samples carry some statistical dependence between elements due to the sequential
nature of the data. Classical statistical models in time-series such as auto-regressive models
are naturally tailored for such data when the sample at each datapoint is a scalar or a low
dimensional vector. In contrast, the deep learning models that we cover here allow one to
work with high-dimensional samples as appearing in textual data and similar domains.

249

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

Forms of Sequence Data

We denote a data sequence via x =
!
xÈ1Í, . . . , xÈT Í", where the superscripts ÈtÍ indicate time

or position, and capture the order in the sequence. Each xÈtÍ is a p-dimensional numerical
data point (or vector). The number of elements in the sequence, T , is sometimes fixed, but
is also often not fixed and can be essentially unbounded. A classical example is a numerical
univariate data sequences (p = 1) arising in time-series of economic, natural, or weather
data. Similarly, multivariate time-series data (p > 1 but typically not huge) also arise in
similar settings.

Most of the motivational examples in this chapter are from the context of textual data. In
this case, t is typically not the time of the text but rather the index of the word or token1

within a text sequence. One way to encode text is that each xÈtÍ represents a single word
using an embedding vector in a manner that we discuss below. If for example x is the text
associated with the Bible then T is large,2 whereas if x is the text associated with a movie
review as per the IMDB movie dataset (see Figure 1.6 (d) in Chapter 1), then T is on
average 231 words. In data formats similar to the latter case, the data involves a collection
of data sequences D = {x(1), . . . , x(n)

} where each x(i) is an individual movie review and n
denotes the total number of movie reviews. While in practice, such data formats often arise,
for simplicity, our discussion in this chapter mostly assumes a single (typically long) text
sequence x.

To help make the discussion concrete, assume momentarily that we encode input text in the
simplest possible manner, where the embedding vector just uses a technique called one-hot
encoding. With this approach we consider the number of words in the dictionary, vocabulary,
or lexicon as dV (e.g., dV ¥ 40, 000) and set p = dV . We then associate with each possible
word, a unit vector e1, . . . , ep which uniquely identifies the word. At this point, an input data
sequence (text) is converted into a sequence of vectors, where xÈtÍ = ei whenever the t-th
word in the sequence is the i-th word in lexicographic order in the dictionary. This approach
is very simplistic and may appear ine�cient. Yet it illustrates that textual data may be easily
represented as a numerical input. With more advanced word embedding methods discussed
below, the dimension of each xÈtÍ can be significantly reduced.

Tasks Involving Sequence Data

There are plenty of tasks and applications involving sequence data. In the context of deep
learning such tasks are handled by neural network models. The more classical forms of neural
networks for sequence data are generally called recurrent neural networks (RNN), while
more modern forms are called transformers. We focus on the more classical RNN forms in
the first sections of this chapter and later visit transformers. The basic forms of RNNs are
introduced in Section 7.2. At this point assume that each of these models processes an input
sequence x to create some output ŷ, where the creation of the output is sequential in nature.

For our discussion, let us focus on text based applications and highlight a few of the tasks
and applications in this context. The ideas may then be adapted to domains such as time-

1In a complete treatment of textual data analysis or natural language processing (NLP) one requires to
define and analyze tokenizers which break up text into natural “words” or parts of words known as tokens.
These details are not our focus and we use “word” and “token” synonymously.

2By some counts, there are about half a million sequential words in the old testament of the Bible and
more when one considers the new testament and its many variants.

250

i
i

i
i

i
i

i
i

7.1 Overview of Models and Activities for Sequence Data

Unit Unit ... Unit Unit ... Unit

x̂hT+1i x̂hT+2i ... x̂hT+⌧i PredictionsWarmup Phase

xhT+1i xhT+2i ... xhT+⌧i

xh1i xh2i ... xhT i

Inputs Sequence

Labels

(a)

Unit

En
co

de
d

In
pu

t

I

Unit

En
co

de
d

In
pu

t

like

Unit

En
co

de
d

In
pu

t

reading

Unit

En
co

de
d

In
pu

t

this

Unit
En

co
de

d
In

pu
t

terribly

Unit

En
co

de
d

In
pu

t

instructive

Unit

En
co

de
d

In
pu

t

book

Softmax

Sentiment

(b)

Encoder Decoder

Input

Output

Unit

We

Unit

Enjoyed

Unit

Writing

Unit

This

Unit

Book

Unit

nous

<start>

Unit

avons

nous

Unit

aimé

avons

Unit

écrire

aimé

Unit

ce

écrire

Unit

livre

ce

Unit

<end>

livre

(c)

U
ni

t

Three

U
ni

t

good

U
ni

t

friends

U
ni

t

having

U
ni

t

fun

CNN

<Start>

(d)

Figure 7.1: Use of recurrent neural network models (or generalizations) for various sequence data
and language tasks. The basic building block, called a unit, is recursively used in the computation.
(a) Lookahead prediction of the sequence. (b) Classification of a sequence or sentiment analysis. (c)
Machine translation. (d) Image captioning.

251

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

series, signal processing, and others. Figure 7.1 illustrates schematically how RNNs (or their
generalizations) can be used. The building blocks of these types of models are called units,
and they are recursively used in the computation of input to output. A basic task presented
in (a) is look-ahead prediction which in the application context of text, implies predicting
the next word (or collection of words) in a sequence. Another type of task presented in (b)
is sequence regression or classification which can be used for applications such as sentiment
analysis. An additional major task illustrated in (c) is machine translation where we translate
the input sequence from one language to another (e.g., Hebrew to Arabic). Another type
of task illustrated in (d) involves decoding an input into a sequence. One such example
application is image captioning where text is generated to describe the input image. Let us
now focus on (a)–(d) in more detail.

Consider Figure 7.1 (a) illustrating lookahead prediction. The simple application in the
context of text is to predict the next word (or next few words) based on the sequence
of input words. Thus, the output is the sequence of inputs shifted by one and the model
attempts to predict the next word at any time t. In the context of time-series this is often
referred to as an auto-regressive analysis. After a warmup phase, the model predicts the
next value in the time series which is also used for predicting the subsequent values until a
desired horizon. Hence for an input sequence x =

!
xÈ1Í, . . . , xÈtÍ" we have a future prediction

ŷ = (ŷÈt+1Í, . . . , ŷÈt+·Í" for some time horizon · . Note that the typical use of large language
models follows this task as well since an input text is given and a response is returned.

Consider now Figure 7.1 (b) illustrating an input sequence processed to produce a single
scalar or vector output. An archetypical application in the context of text is sentiment
analysis where the sentiment or “general vibe” of a sentence is determined. This output may
be a vector of probabilities over possible classes, e.g., {happy, sad, indifferent}, and in
such a case the output is amenable to classification. Hence ŷ is a vector of probabilities and
it can also be converted to a categorical output ‚Y as in (3.34) of Chapter 3.

Moving onto Figure 7.1 (c), consider the application of machine translation where the
input sentence is from one language and the output sentence is from another language.
The architecture of such a model can be composed of two RNNs (or two other types of
sequence models) in an encoder-decoder architecture. Here the encoder model encodes the
input sentence from one language into a context vector in a latent space and the decoder
model decodes from the latent space into a sentence in another language. We describe
architectures for such tasks in Section 7.4 and specific transformer models of this form in
Section 7.5. Observe that with this task, the input x is a sequence of a certain length while
the output ŷ is a sequence of a potentially di�erent length. Note that the notion of a latent
space was first introduced in a di�erent context of autoencoders in Section 3.5.

Figure 7.1 (d) illustrates the task of image captioning. Here for an input image, we wish to
output a sentence describing the image. A common way to achieve this is with a convolutional
neural network as in Chapter 6 creating a context vector in a latent space. This context vector
is then fed into an RNN (or similar sequence model) which acts as a decoder, somewhat
similarly to the decoder in the machine translation case. In this application x is an image,
and ŷ represents an output sentence.

252

i
i

i
i

i
i

i
i

7.1 Overview of Models and Activities for Sequence Data

U
ni

t

U
ni

t

U
ni

t

(a)

U
ni

t

U
ni

t

U
ni

t

(b)

U
ni

t

U
ni

t

U
ni

t

U
ni

t

U
ni

t

(c)

U
ni

t

U
ni

t

U
ni

t

(d)

Figure 7.2: Input output paradigms of sequence models. (a) One-to-many. (b) Many-to-one. (c)
Many-to-many with partial inputs and outputs. (d) Many-to-many with complete inputs and
outputs.

With the tasks and applications highlighted, we see various forms of input x and output ŷ.
Sometimes x and ŷ are sequences and at other times they are not. It is often common to
describe tasks and models as one to many, many to one, or many to many; see Figure 7.2.
In the one to many case, x is simply xÈ1Í while ŷ is a sequence, ŷÈ1Í, ŷÈ2Í, In the many
to one case, x =

!
xÈ1Í, xÈ2Í, . . .

"
is a sequence while ŷ is a single output (scalar or vector).

Finally in the many to many case, both x and ŷ are sequences. Returning to Figure 7.1,
observe that the lookahead prediction task (a) falls in either the many to one or the many
to many case, depending on if the time horizon · is 1 or greater, respectively. The sentiment

253

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

analysis task (b) is a many to one case. The machine translation task (c) is a many to many
case, while the image captioning task (d) is a one to many case.

Word Embedding

One-hot encoding which is the simplest way to encode a word results in a very sparse
vector of high dimensionality, with the dimension being the size of the lexicon, dV . A
popular alternative that has become standard in any application involving text is to use
word embeddings, where we represent each word (or token) by a vector of real numbers of
dimension p, and with p much smaller than dV .

The essence of word embedding techniques is that words from similar contexts have corre-
sponding vectors which are relatively close. Such closeness is often measured via the cosine
of the angle3 between the two vectors in Euclidean space. As an hypothetical example
with p = 4, the word king could be represented by the vector (0.41, 1.2, 3.4, ≠1.3) and the
word queen can be represented by a relatively similar vector such as (0.39, 1.1, 3.5, 1.6).
Then a completely di�erent word such as mean might be represented by a vector such as
(≠0.2, ≠3.2, 1.3, 0.8). One can now verify in this example, that the cosine of the angle between
king and queen is about 0.729 while the cosine of the angle between mean and the other
two words is lower, and is at about ≠0.04 for king and 0.156 for queen, respectively.

Hence with such an embedding, beyond the value of reducing the dimension of each xÈtÍ

from dV (in the order of tens of thousands) to p (in the order of hundreds), we also get
the benefit of similarity and context groupings. Having such a contextual representation of
words plays a positive role in deep learning models since it allows the models to use context
more e�ciently.

Simple word embedding techniques map individual words into vectors, while more advanced
techniques are context aware and yield a representation of the words based on the context
within the rest of the text, enabling models to better deal with homonyms. For example the
word mean inside the phrase mean value, is very di�erent than the same word in side the
phrase mean person. Hence an advanced word embedding technique will encode each of the
occurrences of mean di�erently.

A popular early word embedding technique is word2vec. The creation of this embedding relies
on a neural network trained on very large corpora, to build the embedding vectors. The basic
idea is to train the neural network for a task, and then use an internal layer of the network
as the word embedding. Such an approach of a derived feature vector is common throughout
deep learning. There are two common variations of the word2vec training algorithm with
one approach called the bag of words model, seeking to predict a word from its neighboring
words, while the other approach, the skip-gram model, seeks to predict the words of the
context from a central word. In practice, both with word2vec, and with more advanced
algorithms,4 one may choose if to use a fixed pre-trained version of the word embedding, or
if to fine tune and adjust the word embedding when used as part of a larger model.

3See (A.1) in Appendix A.
4See references to other word embedding approaches in the notes and references at the end of the chapter.

254

i
i

i
i

i
i

i
i

7.2 Basic Recurrent Neural Networks

7.2 Basic Recurrent Neural Networks
Recurrent neural networks are specifically designed for sequences of data and have the
ability to: (i) deal with variable-length sequences, (ii) maintain sequence order, (iii) keep
track of long-term dependencies, and (iv) share parameters across an input sequence. In
order to achieve all of these goals, the recurrent neural network (RNN) model introduces an
internal loop which allows information to be passed from one step of the network to the
next. The RNN maintains a hidden state, also termed cell state, which allows the model to
keep memory as an input sequence is processed. This state evolves over time, as the input
sequence is fed into the model. See Figure 7.3 for a schematic illustration of both a recursive
graph representation and an unfolded graph representation of the model. In the figure we
schematically see how an RNN transforms an input sequence to an output sequence, with
the blue nodes representing units of the model; details follow.

hhti

ŷhti

xhti

- - hht�1i

ŷht�1i

xht�1i

hhti

ŷhti

xhti

hht+1i

ŷht+1i

xht+1i

- -

Figure 7.3: A recursive neural network RNN can be represented (left) via a recursive graph and
(right) via an unfolded representation of that graph. An input sequence x

È1Í
, x

È2Í
. . . is transformed

to an output sequence ŷ
È1Í

, ŷ
È2Í

. . ., where in each step t, the unit, with cell state represented via
h

ÈtÍ, performs the computation.

Recurrent neural networks apply a recurrence relation where at every time step the next
input is combined with the previous state to update the new state and a new output.
This internal loop is the key di�erence between traditional feedforward neural networks
of Chapter 5 and RNNs. In the traditional models, the flow of information from input to
output via hidden layers is only in the forward direction, whereas in RNNs, the input plays
a role as information flows. More specifically, in the traditional models, there is no cyclic
connection between neurons; contrast Figure 5.1 of Chapter 5 with Figure 7.3. Moreover,
the traditional feedforward neural networks work with fixed length input and fixed length
output while the RNN input sequence and output sequence are each allowed to be of variable
(essentially unbounded) length.

The neurons inside RNNs implement the cell state and are typically denoted via hÈtÍ for the
state at time t. Mathematically, the state evolution can be represented via the recurrence
relation,

hÈtÍ
¸˚˙˝

current state

= f◊hx,◊hh(hÈt≠1Í
¸ ˚˙ ˝

old state

, xÈtÍ
¸˚˙˝

input vector

),

255

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

acting on the sequence of input data x =
!
xÈ1Í, xÈ2Í, . . .

"
, to create a sequence of cell states

hÈ1Í, hÈ2Í, . . ., where the initial state hÈ0Í is typically taken as a zero vector. It is important
to note that at every time step t the same function f◊hx,◊hh(·) is used with the same fixed
(over time) sets of parameters ◊hx and ◊hh.

The output sequence ŷ =
!
ŷÈ1Í, ŷÈ2Í, . . .

"
is defined at each time step by an another function

g◊yh(·) with,
ŷÈtÍ = g◊yh(hÈtÍ),

where again, the parameters ◊yh are fixed over time.

The recursive loop enables us to express the cell state at time t, hÈtÍ, in terms of the t first
inputs, namely, omitting the parameter subscripts from f◊hx,◊hh(·), we have,

hÈtÍ = f(

h
Èt≠1Í

. . . f(
h

È2Í

f(f(hÈ0Í, xÈ1Í)¸ ˚˙ ˝
hÈ1Í

, xÈ2Í), xÈ3Í)

¸ ˚˙ ˝
hÈ3Í

. . ., xÈtÍ). (7.1)

Thus, since at time t, the output ŷÈtÍ is a function of hÈtÍ, we can also express the output as
a function of the inputs up until time step t. Namely,

ŷÈtÍ = g(t)
◊

(xÈ1Í, xÈ2Í, xÈ3Í, . . . , xÈtÍ),

where the function g(t)
◊

(·) is specific to time t and captures the unrolling of the state as in
(7.1) or Figure 7.3 (b). This highlights the ability of RNN to deal with variable length input
and output sequences. Here ◊ = (◊hx, ◊hh, ◊yh) is the collection of all learnable parameters
of the RNN.

The functions f◊hx,◊hh(·) and g◊yh(·) are concretely defined via a�ne transformations and
non-linear activations similarly to other common neural network models. Specifically,

I
hÈtÍ = Sh(WhhhÈt≠1Í + WhxxÈtÍ + bh)
ŷÈtÍ = Sy(WyhhÈtÍ + by).

(7.2)

The parameters ◊ = (◊hx, ◊hh, ◊yh) are captured via weight matrices and bias vectors.5
Further, Sh(·) and Sy(·) are vector activation functions typically composed of element-wise
scalar activations ‡(·), similarly to Chapter 5. We denote the dimension of xÈtÍ as p, the
dimension of yÈtÍ as q, and the dimension of the cell state of hÈtÍ as m. Hence Whx œ Rm◊p,
Whh œ Rm◊m, Wyh œ Rq◊m, bh œ Rm, and by œ Rq.

One variant is to feed the output of the previous time step, ŷÈt≠1Í, into the input so that the
input at every time is not xÈtÍ but rather some merging of xÈtÍ and ŷÈt≠1Í. We can denote
this variant via,

I
hÈtÍ = Sh(WhhhÈt≠1Í + Whx(xÈtÍ + T

!
ŷÈt≠1Í") + bh)

ŷÈtÍ = Sy(WyhhÈtÍ + by),
(7.3)

5The actual mapping of the weight and bias vectors to each of (◊hx, ◊hh, ◊yh) is not important. Specifically,
bh can be viewed as either part of ◊hx or ◊hh.

256

i
i

i
i

i
i

i
i

7.2 Basic Recurrent Neural Networks

where T
!

·
"

is an abstraction6 of some transformation which results in a vector of dimension
p (like xÈtÍ).

Note that the forms in (7.2) and (7.3) are suitable for many-to-many mappings, as in
Figure 7.2 (d), since each input xÈtÍ has an associated hÈtÍ and ŷÈtÍ. If we use these recursions
for one-to-many tasks, then we only use a first initial xÈ1Í and then continue the recursion
with 0 values for xÈtÍ on t = 2, 3, . . . until some stopping criterion is met. A typical criterion
is to have a special <stop> token appear within ŷÈtÍ. A similar adaptation can be done for
many-to-one tasks, where we simply ignore all ŷÈtÍ for t < T .

One often refers to the mechanism of computation described in (7.2) as a gate, a simple gate,
an RNN cell, or an RNN unit. Figure 7.4 depicts this computation where + and ◊ are
the usual vector/matrix addition and multiplication operations respectively. In the sequel
we see that the gate structure as in Figure 7.4 can be modified to more complicated forms
such as LSTM and GRU gates appearing in Figure 7.8. In terms of applications, the simple
structure of RNN gates has already proven useful for many basic tasks such as for example
dealing with short sentences for next word prediction as well as for sentiment analysis.

Whh by ⇥ Wyh

⇥ + Sh(·)

Whx ⇥

+

bh

Sy(·)

ŷhti

xhti

hht�1i hhti

Figure 7.4: An RNN unit, also known as a gate, operating on input x
ÈtÍ, and previous cell state

h
Èt≠1Í. The output vector of the unit is ŷ

ÈtÍ. The unit also determines the cell state h
ÈtÍ.

A Simple Concrete Toy Example

To illustrate the application of RNNs let us consider a simple concrete toy example of
lookahead text prediction. For simplicity we resort to one-hot encoding (in contrast to more
advanced word embedding methods). In our toy example assume a lexicon with dV = 8
words, appearing here in lowercase alphabetical order as,

6In practice, this variant is often useful in decoders, described in sections 7.4 and 7.5, where x
ÈtÍ is often

set to 0 except for an initial <start> token, and the transformation T (·) typically transforms an output
embedding into the desired token (e.g., via argmax) and then transforms the token back into an input word
embedding.

257

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

Ë
deep, engineering, learning, machine, mathematical, of, statistics, the

È
,

where each word is represented by a unit vector in R8. For example, the text,

the mathematical engineering of deep learning,

is represented via a sequence x =
!
xÈ1Í, xÈ2Í, xÈ3Í, xÈ4Í, xÈ5Í, xÈ6Í". Here for example xÈ1Í =

(0, 0, 0, 0, 0, 0, 0, 1) because the first word in the sequence, the, is the 8-th word in the
lexicon, and similarly xÈ2Í = (0, 0, 0, 0, 1, 0, 0, 0) because the second word in the sequence,
mathematical, is the 5-th word in the lexicon, etc. Observe that here with one-hot encoding,
p = dV .

For a lookahead prediction application we set the network output to be of dimension q = 8
since each output is of the size of the lexicon. Here when the network is fed a partial input
xÈ1Í, . . . , xÈtÍ, the output at time (step) t, denoted via ŷÈtÍ should ideally be equal to or
be close to the one-hot encoded target yÈtÍ := xÈt+1Í (the next word). Similarly to the
classification examples arising in multinomial regression in Section 3.3, our RNN will output
ŷÈtÍ vectors that are probability vectors over the lexicon. In this case, using maximum a
posteriori probability decisions as in (3.34) of Chapter 3, the coordinate of ŷÈtÍ with the
highest probability can be taken as a prediction ‚YÈtÍ which is an index into the lexicon,
determining the predicted word.

Now following the RNN evolution equations defined in (7.2), we present concrete dimensions
for this illustrative example. A design choice is the size of the hidden state m, which in
this case we arbitrarily take as m = 20. Hence, the weight matrix Whh dealing with state
evolution is 20 ◊ 20, the weight matrix Whx is 20 ◊ 8 dimensional as it converts the inputs to
the state, and the bias vector bh is a 20 dimensional vector. The vector activation function
Sh(·) is composed of scalar activations, which can be of any of the standard types (e.g.,
sigmoid); see Section 5.3. Further, the matrix translating state to output, Wyh is 8 ◊ 20 since
q = 8, and finally by is an 8 dimensional vector. Importantly, in this case, we take the output
activation function Sy(·) as a softmax function since it converts the a�ne transformation
of the state into a probability vector. Hence in summary, such a toy network would have
20 ◊ 20 + 20 ◊ 8 + 20 + 8 ◊ 20 + 8 = 748 parameters to learn.

258

i
i

i
i

i
i

i
i

7.2 Basic Recurrent Neural Networks

hh1i

Wyh

Whx

the

mathematical

mathematical

0.2

0

0.05

0

0.05

0

0.1

0

0.4

0

0.1

0

0.05

0

0.05

1

hh2i

Wyh

Whx

Whh

mathematical

engineering

engineering

0.01

0

0.55

0

0.09

0

0.02

0

0.08

1

0.1

0

0.1

0

0.05

0

hh3i

Wyh

Whx

Whh

engineering

of

of

0.05

0

0.15

1

0.05

0

0.1

0

0.04

0

0.35

0

0.2

0

0.06

0

hh4i

Wyh

Whx

Whh

of

engineering

deep

0.3

0

0.37

0

0.03

0

0.05

0

0.02

0

0.03

1

0.09

0

0.11

0

hh5i

Wyh

Whx

Whh

deep

learning

learning

0.02

1

0.52

0

0.03

0

0.12

0

0.03

0

0.03

0

0.21

0

0.04

0

deep:
engineering:
learning:

machine:
mathematical:
of:
statistics:
the:

One-hot encoded:

Input:

Prediction:

Target:

Figure 7.5: A schematic of RNN cells unrolled for language modeling. In this illustration, the
input sentence the mathematical engineering of deep learning, yields lookahead prediction
mathematical engineering of engineering learning, with a single error.

Figure 7.5 presents a schematic illustration of the unrolling of this toy network. When the
model is used in training, the shifted sequence y =

!
xÈ2Í, xÈ3Í, . . .

"
serves as the sequence of

target labels for comparison; these are one-hot encoded vectors. Then for given weight and
bias parameters, we predict ŷ =

!
ŷÈ1Í, ŷÈ2Í, . . .

"
as the predicted labels, where each ŷÈtÍ is a

vector of probabilities over the lexicon for output word at step t. We then use categorical
cross entropy (see equation (3.30) in Chapter 3) to compute the loss. We train using gradient
based learning similarly to all other deep learning models, yet for evaluation of the gradient,
we use a variant of backpropagation called backpropagation through time which is described
below.

In production, the way that the model is used, is by selecting the word at time t, with the
highest probability in ŷÈtÍ. We denote the index of this selection via ‚YÈtÍ. In the illustration
of Figure 7.5, most of the words are properly predicted with the exception of the fourth
word at t = 4 which is predicted as deep while the target is engineering.

Training an RNN with Backpropagation Through Time

In general when training an RNN, the loss function is accumulated over all time steps t.
In particular, during the execution of gradient descent or some generalization of gradient

259

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

descent, such as ADAM described in Chapter 4, we compute the loss and its derivatives
with respect to weight and bias parameters, i.e., ◊. A general expression for the loss is

C(◊) = 1
T

Tÿ

t=1
CÈtÍ(◊). (7.4)

Here CÈtÍ(◊) denotes the individual loss associated with time t. For example, continuing
with the text language model from above, we may set,

CÈtÍ(◊) = ≠

dVÿ

k=1
yÈtÍ

k
log ŷÈtÍ

k
, (7.5)

similarly to the categorical cross entropy in (3.30) of Chapter 3. Here, keep in mind that
yÈtÍ is one-hot encoded of dimension q = dV , and hence the summation in (7.5) has a
single non-zero summand at the index k for which yÈtÍ

k
= 1. Further, note that even if word

embeddings are used for the input xÈtÍ, then the output ŷÈtÍ still represents a probability
vector over the lexicon of size dV so that it is comparable to the target output yÈtÍ.

Gradient computation of C(◊) with respect to the various weight matrices and bias vectors
in ◊ is somewhat similar to the backpropagation algorithm described in Section 5.4; see also
Section 4.4 for automatic di�erentiation basics. However, a key di�erence lies in the fact that
the same weight and bias parameters are used for all time t; see the unfolded representation
of the RNN in Figure 7.3. This di�erence as well as the fact that inputs to RNN are of
arbitrary size T , imposes some hardships on gradient computation. The basic algorithm is
called backpropagation through time.

One way to view the algorithm is to momentarily return to the feedforward networks of
Chapter 5 and assume that the weight matrices and bias vectors of layers are all constrained
to be the same with a single set of parameters, W and b, for all layers. Further, momentarily
assume that the network depth L, is fixed at the sequence input length T . This form of a
feedforward network is essentially an unfolded RNN if we consider every recursive step of
the RNN as a layer in the feedforward network, and if we ignore inputs to the RNN beyond
the first input xÈ1Í, and impose loss on the RNN only for the last output.

One can also modify feedforward networks to have additional external inputs at each of the
hidden layers. In our feedforward analogy, assume now that an external input to the ¸-th
layer is xÈ¸Í, where the layer ¸ and the time t play the same role. Further, one may impose
loss functions on feedforward networks that not only take the neurons at the last layer as
arguments, but rather use all layers, similarly to (7.4). If we also employ such a loss function
on the feedforward network analogy then we see that we can treat the unfolded recurrent
neural network as a feedforward network, where for simplicity we treat the transformation
from hÈtÍ to yÈtÍ in (7.2) as the identity transformation. With this, let us return to the details
of the backpropagation algorithm in Section 5.4 and see how it can be adapted for recurrent
neural networks.

At first a forward pass is carried out to populate the neuron values. In feedforward networks
these were denoted a[¸] whereas in the unfolded recurrent neural network they are denoted via
hÈtÍ. Then a backward pass is used to compute the adjoint elements, denoted ’ÈtÍ, similarly

260

i
i

i
i

i
i

i
i

7.2 Basic Recurrent Neural Networks

hh1i hh2i hhT�1i hhT i

⇣h1i ⇣h2i ⇣hT�1i ⇣hT i

W

gW

xh1i xh2i xhT�1i xhT i

Gradient

Shared Parameter

Forward

Backward
Loss : C

yh1i, . . . , yhT i

ŷh1i, . . . , ŷhT i

Figure 7.6: The variables and flow of information in the backpropagation through time algorithm.
The shared parameter W influences the recursive forward pass computation of all cell states
h

È1Í
, . . . , h

ÈT Í. Once the backwards pass computation is carried out for all adjoints ’
ÈT Í

, . . . , ’
È1Í,

they are all used to compute the gradient of the loss, gW .

to the adjoints defined in (5.24) of Chapter 5. In the RNN context these are,

’ÈtÍ = ˆC(◊)
ˆhÈtÍ .

The essence of backpropagation is computing ’Èt≠1Í based on ’ÈtÍ. This computation follows
similar lines to (5.26) of Chapter 5, adapted here to be,

’ÈtÍ =

Y
]

[

1
T

q
T

·=1 ĊÈ·Í(hÈ·Í), t = T,

ˆh
Èt+1Í

ˆhÈtÍ ’Èt+1Í, t = T ≠ 1, . . . , 1,
(7.6)

where ĊÈ·Í(hÈ·Í) is the derivative of (7.5) with respect to the prediction ŷÈ·Í for which we
are given computable expressions.

Once the backpropagation through time recursion (7.6) is carried out, we use the computed
adjoint sequence ’ÈT Í, . . . , ’È1Í to evaluate the gradient of the loss with respect to components
of ◊. For simplicity let us focus only on Whh as appearing in (7.2), denoted here as W for

261

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

brevity. Specifically, we are interested in evaluating the m ◊ m derivative matrix,

gW = ˆC

ˆW
= 1

T

Tÿ

t=1

ˆCÈtÍ!hÈtÍ, yÈtÍ ; W
"

ˆW
, (7.7)

similarly to the notation in the feedforward case as in (5.22) of Chapter 5. A noticeable
di�erence between (7.7) and (5.22) is that due to the loss function structure in (7.4), gW is
a direct function of the cell state at all times t (all internal layers of the unfolded graph).
However, a more important di�erence is due to the fact that all time steps (unfolded layers)
share the same parameter W , and thus the computational graph connecting W and the
loss dictates that all adjoints a�ect gW . See Figure 7.6 and contrast it with Figure 5.7 of
Chapter 5.

While the feedforward case in Chapter 5 with individual parameters per layer has an easy
translation of an adjoint into a gradient, as in the right hand side of (5.25), here the
translation of adjoints to a gradient is more complicated and more computationally costly.
Specifically, using the multivariate chain rule, we can be informally7 represent the gradient
as,

gW = 1
T

Tÿ

t=1

tÿ

·=1

ˆhÈ·Í

ˆW

ˆC

ˆhÈ·Í
¸ ˚˙ ˝

’È·Í

. (7.8)

To understand the internal summation in (7.8), recall that the output ŷÈtÍ, used in the
individual loss CÈtÍ, depends on all cell states hÈ1Í, . . . , hÈtÍ, where each cell state is parame-
terized by a common W . Hence the computational graph for this loss component, needs to
be taken into account when applying the chain rule. This is also illustrated in the top part
of Figure 7.6.

Note that formally the expression ˆh
È·Í

ˆW
in (7.8) is a derivative of a vector with respect to a

matrix, and we do not handle such objects in this book. An alternative is to represent each
scalar component of hÈtÍ separately. Using (7.2) and assuming the vector activation function
Sh(·) is composed of scalar activation functions ‡(·), we have,

hÈ·Í
j

= ‡([WhhhÈ·≠1Í + WhxxÈ·Í + bh]j).

Now using (A.15) from Appendix A, we have that the derivative of the scalar hÈ·Í
j

with
respect to the weight matrix Whh (abbreviated as W) is given by the matrix,

ˆhÈ·Í
j

ˆW
= ‡̇(WhhhÈ·≠1Í + WhxxÈ·Í + bh) ej

!
hÈ·≠1Í"€

, (7.9)

where ej is the m-dimensional unit vector with 1 at the j-th coordinate, and ‡̇(·) is the
derivative of the scalar activation function; see also Section 5.3.

Continuing with the approach of treating individual neurons hÈ·Í
j

, let us now present a
more precise version of (7.8). For this consider the fact that in computing each individual
loss, CÈ·Í, we rely on the neurons with the cell states hÈ1Í

j
, . . . , hÈ·Í

j
, for all j = 1, . . . , m. In

turn, each of these neurons is influenced by W (shorthand for Whh), as in (7.9). Now (also

7The representation in (7.8) is informal because the vector-matrix derivative ˆh
È·Í

ˆW
is not a matrix.

262

i
i

i
i

i
i

i
i

7.2 Basic Recurrent Neural Networks

summing up over all individual losses for t = 1, . . . , T), we use the multivariate chain rule to
arrive at,

gW = 1
T

Tÿ

t=1

tÿ

·=1

mÿ

j=1

ˆhÈ·Í
j

ˆW
’È·Í

j
, (7.10)

which is fully computable using the backpropagated adjoints from (7.6) and (7.9).

To summarize backpropagation through time, we first carry out a forward pass to populate
hÈ1Í, . . . , hÈT Í using (7.2) or the (7.3) variant. We then carry out a backward pass to populate
the adjoints ’ÈT Í, . . . , ’È1Í using (7.6). We then compute the gradient gW via (7.10). This
summary is for our simplified case focusing only on W = Whh and ignoring the fact that
yÈtÍ is generally not hÈtÍ, but rather constructed via the second equation in (7.2). Hence in
our simplified presentation we focused on the essence and ignored less complicated details
for the complete set of ◊ parameters.

Let us also consider the Jacobian ˆh
Èt+1Í

ˆhÈtÍ appearing in (7.6). Again, assuming that the vector
activation function Sh(·) of (7.2) is composed of element wise scalar activation functions
‡(·), this Jacobian can be represented as,

ˆhÈt+1Í

ˆhÈtÍ = W €
hh

diag
1

‡̇(WhhhÈtÍ + WhxxÈtÍ + bh)
2

, (7.11)

where the derivative of the activation function is denoted via ‡̇(·) and is applied element
wise to the components of its input.

Computational Challenges

We discussed vanishing and exploding gradient phenomena in Section 5.4, where in equations
(5.34) and (5.35) we saw how both the forward pass and the backwards pass involve actions
of repeated matrix multiplication. More specifically, the backpropagation based equation
(5.35) is based on a simplification of a feedforward neural network that ignores the e�ect of
activation functions, ignores the bias, and assumes that each layer of the network has the
same weight matrix. In such a case, it is evident that for deep networks (L large), vanishing
or exploding gradient phenomena are likely to occur.

In recurrent neural networks, such phenomena are even more problematic than typical deep
feedforward networks because the input size T (paralleling the depth of the feedforward
network L), can be large. Unrolling (7.6) we get for t = 1, . . . , T ≠ 1,

’ÈtÍ = ˆhÈt+1Í

ˆhÈtÍ
ˆhÈt+2Í

ˆhÈt+1Í · · ·
ˆhÈT ≠1Í

ˆhÈT ≠2Í
ˆhÈT Í

ˆhÈT ≠1Í ’ÈT Í.

Now using (7.11) and for simplicity ignoring the action of the activation function (treating
it as an identity function), ignoring the input xÈtÍ, and ignoring the bias term, we obtain,

’ÈtÍ =
1

W €
hh

2T ≠t

’ÈT Í. (7.12)

This representation is similar to (5.35) of Chapter 5, and is even more realistic since in
recurrent neural networks, the weight matrices of all unrolled layers are the same, whereas in
the Chapter 5 analysis of feedforward networks fixing the weight matrix was a simplification.

263

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

Hence, in recurrent neural networks trained on inputs with large sizes T , it is very likely
that during backpropagation, the adjoint values ’ÈtÍ vanish or explode. This follows from
the matrix power in (7.12), since in most situations, the maximal eigenvalue of Whh is likely
to not be at or near unity (see also discussion on the e�ect of eigenvalues on vanishing and
exploding phenomena in Section 5.4).

Considering (7.12) and assuming W €
hh

has a maximal eigenvalue less than unity in absolute
value, then if T is large, for small t, ’ÈtÍ

¥ 0. One way to express this is to consider some
T0 < T such for example if T = 300, set T0 = 250, and then for t < T0 assume ’ÈtÍ = 0. In
this case the gradient computation (7.10) can be roughly represented as,

gW ¥
1
T

Tÿ

t=T0

tÿ

·=T0

mÿ

j=1

ˆhÈ·Í
j

ˆW
’È·Í

j
. (7.13)

Now considering the influence of the input via (7.13) and (7.9), we see that the gradient
is only updated based on “near e�ects”, and not based on “long-term e�ects” since inputs
to the sequence xÈtÍ for t < T0 do not play a role. For example in language modelling, the
contribution of faraway words to predicting the next word at time-step diminishes when the
gradient vanishes early on. As an example consider the text

Slava grew up in Ukraine before he moved around the world, first to the

United States, and then to Australia. He loves teaching languages and is an

avid teacher of his own mother tongue _.’

In this case, completion of the end of the text, marked via _, requires information from the
start of the text. Models presented in the sections below, were also designed to overcome
such di�culties.

Further, with recurrent neural networks, computation of the loss and of the gradients across
an entire corpus is generally infeasible or too expensive. In practice, a batch of sentences is
used to compute the loss to limit the sequence size T . Note also that in cases where W €

hh
has

eigenvalues greater than unity in absolute value an exploding gradient phenomena is likely
to occur. For this, gradient clipping may be employed as described at the end of Section 5.4.
Another technique is to use truncated backpropagation through time (TBPTT) which limits
the number of time steps the signal can backpropagate in each forward pass.

Other Aspects of Training

Some practices of training recurrent neural networks are very similar to training feedforward
or convolutional networks. For example, one uses similar weight initialization techniques to
those introduced in Section 5.5 in the context of feedforward networks. However, there are
some di�erences as well. An important aspect to keep in mind is that unlike the supervised
setting that prevailed with the models of Chapter 5 and Chapter 6, with recurrent models we
are often able to train with self-supervision. Specifically, as already discussed in the example
of Figure 7.5 we may use a shifted sequence y =

!
xÈ2Í, xÈ3Í, . . .

"
as the desired output for

the loss, and simply train the model for one step lookahead prediction.

Note however, that not all training is of the self-supervised form. In some cases, often arising
in machine translation applications described in the sequel, we are naturally presented with an
input sequence xÈ1Í, xÈ2Í, . . . which may result from word embedding of one natural language

264

i
i

i
i

i
i

i
i

7.3 Generalizations and Modifications to RNNs

(e.g., English) and a corresponding output sequence yÈ1Í, yÈ2Í, . . ., of one-hot encoded vectors,
associated with another natural language (e.g., Arabic). Hence recurrent neural networks
can be trained in a supervised setting as well.

In both the self-supervised and supervised settings, in cases where we use the formulation
(7.3), where the output ŷÈt≠1Í is fed into the input, we sometimes use a training technique
called teacher forcing. The idea of teacher forcing is to use the actual (correct) one-hot
encoded label yÈt≠1Í in place of the model generated (predicted) probability vector ŷÈt≠1Í

during training. That is, the recursion (7.3) has now inputs that are based on the actual
labels instead of the predictions. Note that in this case, T (·) in (7.3), can be viewed as
also converting the probability vector into a word embedding, if needed. This technique
accelerates training by removing the errors in the labels. We revisit the teacher forcing
technique both at the end of Section 7.4 in the context of encoder-decoder models, and at
the end of Section 7.5 in the context of transformers where it is extremely powerful due to
parallelization.

7.3 Generalizations and Modifications to RNNs
The basic recurrent networks of Section 7.2, while powerful, still su�er from some drawbacks
in terms of training, vanishing and exploding gradient, and expressivity. In this section we
highlight a few generalizations and modifications to RNNs that enable more powerful models
for sequence data. An underlying concept is the connection of gates in various creative ways
that enable more expressive and robust models. The notion of a gate was already illustrated
in Figure 7.4. In this section we see how such gates can be connected in diverse ways, as
well as how the internals of the gate can be extended to yield more powerful models.

Stacking and Reversing Gates

Basic extensions to recurrent neural networks are possible by interconnecting gates in
more complicated forms than just a forward direction of data flow. In particular, common
approaches are to either stack the gates to form deeper networks, reverse the gates, or combine
the two approaches. See Figure 7.7 for a schematic representation of such interconnections
of gates.

Let us first consider reversing of gates as in Figure 7.7 (a) to create a bidirectional recurrent
neural network. For such a modification we extended the RNN evolution equation (7.2) to,

Y
__]

__[

hÈtÍ
f

= Sh(W f

hh
hÈt≠1Í

f
+ W f

hx
xÈtÍ + bf

h
)

hÈtÍ
r

= Sh(W r

hh
hÈt+1Í

r
+ W r

hx
xÈtÍ + br

h
)

ŷÈtÍ = Sy(W f

yh
hÈtÍ

f
+ W r

yh
hÈtÍ

r
+ by),

(7.14)

where now for every time t there are two cell states, hÈtÍ
f

and hÈtÍ
r , representing the forward

direction and reverse direction respectively. Observe in (7.14) that hÈtÍ
f

evolves based on the
input xÈtÍ and hÈt≠1Í

f
, while hÈtÍ

r evolves based on the input xÈtÍ and hÈt+1Í
f

. Naturally with
such an extension there are more trained parameters, superscripted via f and r respectively
in (7.14).

265

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

Unit

Unit

Unit

Unit

Unit

Unit

- - -

- - -

- - -

- - -

Unit

Unit

(a)

Unit

...

Unit

Unit

Unit

...

Unit

Unit

Unit

...

Unit

Unit

...

...

...

...

...

Unit

...

Unit

Unit

(b)

Figure 7.7: Alternative configurations and extensions of recurrent neural networks. (a) Stacked
RNN. (b) Bidirectional RNN.

As is evident from (7.14), the forward sequence of cell states hÈ1Í
f

, hÈ2Í
f

, . . . , hÈT Í
f

and the reverse
sequence of cell states hÈT Í

r , hÈt≠1Í
r , . . . , hÈ1Í

r , evolve without interaction. Once computed, these
sequences are then combined to obtain the output sequence. Such bidirectional data flow
enables the model to be more versatile, especially for cases where the entire input sequence
is available. This is the setup in applications such as handwritten text recognition, machine
translation, speech recognition, and part-of-speech tagging, among others.

Let us now consider stacking of gates as in Figure 7.7 (b) to create a deeper model, also
sometimes known as a stacked recurrent neural network. With this paradigm we extend the
evolution equations (7.2) to,

Y
__________]

__________[

hÈtÍ
[1] = S[1]

h
(W [1]

hh
hÈt≠1Í

[1] + W [1]
hx

xÈtÍ + b[1]
h

)

hÈtÍ
[2] = S[2]

h
(W [2]

hh
hÈt≠1Í

[2] + W [2]
hx

hÈtÍ
[1] + b[2]

h
)

...

hÈtÍ
[L] = S[L]

h
(W [L]

hh
hÈt≠1Í

[L] + W [L]
hx

hÈtÍ
[L≠1] + b[L]

h
)

ŷÈtÍ = Sy(WyhhÈtÍ
[L] + by),

(7.15)

where we now use notation such as [1], . . . , [L] to signify the depth of individual components
and L is the number of stacked layers, similarly to the notation of Chapter 5. Observe that
the cell state at time t and depth ¸, denoted via hÈtÍ

[¸] is computed based on the cell state at
depth ¸ ≠ 1 and the same time t using the matrix W [¸]

hx
(where the notation x here in the

subscript implies the previous level). It is also computed using the cell state at the same
depth, ¸, and the previous time, t ≠ 1 using the matrix W [¸]

hh
.

266

i
i

i
i

i
i

i
i

7.3 Generalizations and Modifications to RNNs

Such stacked RNN models are clearly more expressive and thus they generally outperform
single-layer recurrent neural networks when trained with enough data. However, they are
harder to train as the number of parameters clearly grows proportionally to the number of
layers. We also mention that combinations of stacking and reversing are also possible.

Long Short Term Memory Models

Long short term memory (LSTM) models are generalizations of basic recurrent neural
networks that are designed to preserve information over many time steps. To understand
the idea behind LSTM, it is constructive to think in terms of logical operations that
are approximated via multiplication of vectors. In particular, as we see below, di�erent
components of LSTM interplay in a way that can heuristically be described as computation
of a logical circuit. More specifically, some of the neurons inside LSTM can be called internal
gates and are represented as values in the range [0, 1] and these are then multiplied by other
neurons with arbitrary real values. In particular, when a vector of neurons in such an internal
gate, say g, has elements in the range [0, 1], and another vector of neurons, say c has general
real values, then the element wise multiplication g § c can be viewed as a restriction which
approximately zeros out (forgets) entries of c when the corresponding entry of g is near 0.
We informally say that the entry of the internal gate is “open” when it is approximately
at 1 and similarly “closed” when it is approximately 0. Using internal gates for this type
of “approximate logical masking” is common in these models as well as the gated recurrent
units described in the sequel.

A key concept in LSTM is to extend the hidden units of RNNs by separating the information
flow between units into two groups where one group is called the cell state and denoted cÈtÍ,
while the other group is called the hidden state and denoted hÈtÍ. The model is designed so
that long term dependancies are generally retained through cÈtÍ while short term dependencies
are carried by hÈtÍ. The interaction between these groups of neurons is enabled via additional
groups of neurons, namely the internal gates, which are generally vectors with entries in the
range [0, 1], denoted via gÈtÍ

f
, gÈtÍ

i
, and gÈtÍ

o . An additional internal group of neurons, denoted
via c̃ÈtÍ, is sometimes called the internal cell state.

For the basic recurrent neural network models of Section 7.2, we used m for the number of
neurons and this is also the dimension of information flow between successive units. However,
for LSTM, only some of the neurons are used for information flow between units, namely
cÈtÍ and hÈtÍ. In terms of dimension, we retain m as the number of neurons, and assume that
m = 6 m̃ where the dimensions of all vectors cÈtÍ, hÈtÍ, c̃ÈtÍ, gÈtÍ

f
, gÈtÍ

i
, and gÈtÍ

o is m̃.

267

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

. +
chti

. .

ghti
f ghti

i c̃hti ghtio

xhti

cht�1i

hht�1i

chti

hhti

hhti

STanh(·)

SSig(·)STanh(·)SSig(·)SSig(·)

(a)

. +

. 1�

.

ghtir ghtiu h̃hti

xhti

hht�1i hhti

hhti

SSig(·) SSig(·)
STanh(·)

(b)

Figure 7.8: Representation of the LSTM and the GRU units. Internal gates are represented in
yellow and internal states are in gray. The output ŷ

ÈtÍ is not presented. (a) In LSTM there are
three internal gates and the internal state is called the internal cell state. (b) In GRU there are two
internal gates and the internal state is called the internal hidden state.

A basic LSTM unit is illustrated in Figure 7.8 (a) which summarizes the evolution associated
with this unit. Like the simpler RNN counterpart in Figure 7.4, and equations (7.2), the

268

i
i

i
i

i
i

i
i

7.3 Generalizations and Modifications to RNNs

evolution equations of LSTM describe how the pair (cÈtÍ, hÈtÍ) evolves as a function of the
previous pair (cÈt≠1Í, hÈt≠1Í) and the input xÈtÍ. Further, the output ŷÈtÍ evolves based on
(cÈtÍ, hÈtÍ), directly via hÈtÍ and indirectly based on cÈtÍ. Unlike the RNN (7.2), the LSTM
evolution is more complex since it also involves the internal gates and neurons.

The LSTM evolution equations are,
Y
______]

______[

cÈtÍ = gf § cÈt≠1Í + gi § STanh

1
Wc̃h hÈt≠1Í + Wc̃x xÈtÍ + bc̃

2

¸ ˚˙ ˝
c̃ÈtÍ

(cell state)

hÈtÍ = go § STanh(cÈtÍ) (hidden state)

ŷÈtÍ = Sy(WyhhÈtÍ + by),
(7.16)

where for clarity we omit the time superscripts from the internal gates and denote them via
gf , gi, and go. Importantly, at every time t these internal gates are computed as,

Y
__]

__[

gf = SSig
!
WfhhÈt≠1Í + WfxxÈtÍ + bf

"
(forget gate)

gi = SSig
!
WihhÈt≠1Í + WixxÈtÍ + bi

"
(input gate)

go = SSig
!
WohhÈt≠1Í) + WoxxÈtÍ + bo

"
. (output gate)

(7.17)

Note that to restrict the value of internal gates to the range [0, 1], sigmoid activation functions
are typically used and we denote the associated vector activation function via SSig(·). The
hidden state, the cell state, and the internal cell state information is not generally restricted
to [0, 1] and a typical activation function is tanh where we denote the associated vector
activation function via STanh(·).

As evident from (7.16) and (7.17), for an LSTM with input of dimension p and output of
dimension q, the trained LSTM parameters include the following. First there are four m̃ ◊ m̃
weight matrices Wc̃h, Wfh, Wih, and Woh. Further there are the four m̃ ◊ p weight matrices
Wc̃x, Wfx, Wix, and Wox. In addition there is the q ◊ m̃ weight matrix Wyh, as well as the
five associated bias vectors.

The specific structure of an LSTM unit interconnects the internal gates in a way that
enables using both long term and short term memory, captured in cÈtÍ and hÈtÍ respectively.
Specifically, the internal gates help select which information is “forgotten”, “used as input”,
or “used as output”. At each time step t the entries in the internal gate vectors gÈtÍ

f
, gÈtÍ

i
,

and gÈtÍ
o can be “open”, “closed”, or somewhere in-between where entries that are near 1

are considered open and entries that are near 0 are considered closed. The forget gate gÈtÍ
f

is multiplied element wise with the previous cell state cÈt≠1Í to “forget” information from
the previous cell state or not, depending on being closed or open respectively. Similarly, the
input gate, gÈtÍ

i
controls what parts of the new cell content are written to the cell and this is

applied to the internal cell state c̃ÈtÍ which models the “selected information” based on the
current input and the previous short term memory. Finally the output gate, gÈtÍ

o , controls
what parts of the cell are written to the hidden state hÈtÍ which is then used both for output
ŷÈtÍ and the short term memory passed onto the next unit.

It is interesting to consider the magnitudes of the LSTM elements, specifically in the first
equation of (7.16). At time t, the previous cell state cÈt≠1Í may have entries with general

269

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

values (not limited to [≠1, 1]). These values may then be “forgotten” if multiplied by gÈtÍ
f

in
cases where it is approximately at 0. Further, new long term memory is accumulated when
gÈtÍ

i
is approximately at 1. Observe that since the tanh activation function’s range is [≠1, 1],

the accumulation of this new memory is limited at every time step. Specifically, based on
the internal cell state, c̃ÈtÍ, the memory may increase or decrease by at most 1 per time step.

The interconnection of LSTM units follows the same principles as the interconnection
of recurrent neural network units outlined above. Specifically, one may view an unrolled
representation of LSTM in the same manner as an unrolled representation of basic recurrent
neural networks, presented in Figure 7.3. The di�erence is that both cÈtÍ and hÈtÍ are passed
between time t and time t + 1, and not just hÈtÍ as in basic RNN. With this, the same
extensions that one may consider for basic RNNs can be applied to LSTM. Specifically,
LSTM can be reversed as in Figure 7.7 (a) or stacked into a deeper architecture as in
Figure 7.7 (b). In reversing LSTM, the reverse direction LSTM passes (cÈt+1Í, hÈt+1Í) into
the unit computing (cÈtÍ, hÈtÍ). In stacking LSTMs, the hidden state hÈtÍ

[¸] of layer ¸ is passed
as an input (similar to xÈtÍ) for the unit above at layer ¸ + 1 but not the cell state. Note
that in stacked LSTM we may view cÈtÍ

[1] , . . . , cÈtÍ
[L] as a representation of long term memory

across all layers at step t. This long term memory is passed to the next step, t + 1.

Gated Recurrent Unit Models

An alternative to the LSTM architecture is the gated recurrent unit (GRU) architecture, with
a unit illustrated in Figure 7.8 (b). While LSTMs make an explicit separation of neurons to
be long term or short term, with GRUs we return to a somewhat simpler architecture with
only one key set of neurons hÈtÍ, again called the hidden state. Gated recurrent units store
both long-term dependencies and short-term memory in the single hidden state. Like LSTMs,
gated recurrent units use internal gates with values in the range [0, 1], this time called the
reset gate gÈtÍ

r and the update gate gÈtÍ
u . Similarly to LSTMs that maintain an internal cell

state, GRUs maintain an internal hidden state h̃ÈtÍ. Setting m̃ as the number of neurons
in each of these groups, the total number of neurons in a GRU is m = 4m̃. Hence with 4
components instead of 6 components, gated recurrent units provide a simpler architecture in
comparison to LSTM as there are only two internal gates (in comparison to three) and a
single group of states passed between time units (in comparison to two).

The basic evolution equation for gated recurrent units is,
Y
__]

__[

hÈtÍ = (1 ≠ gu) § hÈt≠1Í + gu § STanh

1
W

h̃h
(gr § hÈt≠1Í) + W

h̃x
xÈtÍ + b

h̃

2

¸ ˚˙ ˝
h̃ÈtÍ

ŷÈtÍ = Sy(WyhhÈtÍ + by),

(7.18)

where for clarity we omit the time superscripts from the internal gates and denote them via
gr and gu. At every time t, these internal gates are computed as,

I
gr = SSig

!
WrhhÈt≠1Í + WrxxÈtÍ + br

"
(reset gate)

gu = SSig
!
WuhhÈt≠1Í + WuxxÈtÍ + bu

"
. (update gate)

(7.19)

A key attribute of the first equation of (7.18) is that new entries of the cell state hÈtÍ are
computed as a convex combination of the entries of the previous cell state hÈt≠1Í and the

270

i
i

i
i

i
i

i
i

7.4 Encoders Decoders and the Attention Mechanism

hidden cell state h̃ÈtÍ. This convex combination is determined by the entries of gÈtÍ
u where an

entry near 1 implies “update” of the cell state based on the internal cell state, and an entry
near 0 implies retaining the previous value (not updating).

As evident from (7.18) and (7.19), for a GRU with input of dimension p and output of
dimension q, the trained parameters include the following. First there are three m̃ ◊ m̃
weight matrices W

h̃h
, Wrh, and Wuh. Further there are the three m̃ ◊ p weight matrices

W
h̃x

, Wrx, and Wux. In addition there is the q ◊ m̃ weight matrix Wyh, as well as the four
associated bias vectors. Again as evident, the number of parameter groups is smaller than
that of LSTM.

To gain some intuition about the GRU architecture we may observe that the update gate
gu plays a role similar to both the forget gate, gf , and input gate, gi in LSTM. Specifically
compare the first equation in (7.18) with the first equation in (7.16). The simplification
o�ered by GRU is to use a convex combination (1 ≠ gu, gu) instead of a general linear
combination (gf , gi) as in LSTM. In both architectures this operation controls what parts of
long term memory information are updated versus preserved. One may also observe that
GRU’s internal hidden state h̃ÈtÍ is updated via a slightly more complex mechanism than
LSTM’s internal cell state c̃ÈtÍ. The innovation in GRUs is to use the reset gate, gr. Practice
has shown that with such an architecture, GRUs are able to maintain both long term and
short term memory inside the hidden state sequence, hÈ1Í, hÈ2Í,

Note that the interconnection of GRUs can follow the exact same lines as other recurrent neu-
ral network architectures. Again, bi-directional connections as well as stacked configurations
are possible; see Figure 7.7.

7.4 Encoders Decoders and the Attention Mechanism
One of the great application successes of sequence models is in the domain of machine
translation tasks, namely the translation of one human language to another. For this, a
general paradigm involving an encoder neural network and a decoder neural network is
common. Other applications of encoders and decoders include, image to text models and text
to image models. Yet, the main motivation we consider here is machine translation, since
this application was the main driver in the development of encoder-decoder architectures
within sequence models.

An important machine learning concept that has advances machine translation and other
tasks, is the attention mechanism. This idea is incorporated in transformer models that
currently drive state of the art large language models. Transformers are the topic of the
next section and in this current section, we first introduce general ideas of encoder-decoder
architectures with the motivation of machine translation. We then formally define the
attention mechanism. Finally, we see an encoder-decoder architecture that incorporates the
attention mechanism at the interface of the encoder and the decoder.

Encoder-Decoder Architectures for Machine Translation

Recall from Section 7.1 that in general, when considering natural language, the input text is
converted into a sequence of word embeddings denoted xÈ1Í, xÈ2Í, With such a sequence,
at some point, an embedding of a word or token such as <stop> appears and marks the end

271

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

of the text. In a machine translation application, our goal is to convert this input sequence
to an output sequence ŷÈ1Í, ŷÈ2Í, . . ., also containing a <stop> token representation at its
end. Clearly the input is in one natural language, e.g., French, and the output is an another
natural language, e.g., Telugu.

Machine translation handled via an encoder-decoder architecture, uses a setup similar to
Figure 7.9 (a). First, an encoder model which is a recurrent neural network, or a variant such
as LSTM, or GRU, is used to convert the input sequence into the latent space by creating a
context vector also known as the code, denoted via zı. Ideally this code encompasses the
meaning and style of the input text. Then, a second sequence model, known as the decoder,
takes the code zı as input and converts it to the output sentence. Clearly the encoder model
in this setup is configured as a many to one model, while the decoder model is configured as
a one to many model. In the decoder, the output at each time fed into the input for the next
time as in (7.3). Note that the code zı is a vector of fixed dimension. Further the dimension
p of each xÈtÍ, the dimension q of each ŷÈtÍ typically di�er and each typically has their own
encoding. The input and output sequences are of arbitrary length, where the length of the
input sequence and the length of the output sequence may di�er.

Unit

We

Unit

enjoyed

Unit

writing

Unit

this

Unit

book

Co
nt

ex
tV

ec
to

r

z?

Unit

<start>

Nous

Unit

Nous

avons

Unit

avons

aimé

Unit

aimé

écrire

Unit

écrire

ce

Unit

ce

livre

Unit

livre

<end>

Encoder Decoder
Input

Output

(a)

Unit

We

Unit

enjoyed

Unit

writing

Unit

this

Unit

book

Co
nt

ex
tV

ec
to

r

z?

Unit

<start>

Nous

Unit

Nous

avons

Unit

avons

aimé

Unit

aimé

écrire

Unit

écrire

ce

Unit

ce

livre

Unit

livre

<end>

Encoder Decoder
Input

Output

(b)

Figure 7.9: Unrolling of basic encoder-decoder architectures for machine translation. (a) A basic
architecture where the encoder output context vector z

ı is computed and fed as the initial state to
the decoder. (b) A more advanced architecture where z

ı is also presented at the input and output
at each time step of the decoder.

272

i
i

i
i

i
i

i
i

7.4 Encoders Decoders and the Attention Mechanism

This basic type of encoder-decoder architecture, as in Figure 7.9 (a), has already proven
quite useful for early attempts of machine translation using deep sequence models. The
choice between basic RNN, LSTM, GRU, or stacked combinations of one of these types
of units is a modelling choice that one can make. No matter what type of unit is used, a
key weakness is that the impact of the code zı on the output ŷÈ1Í, ŷÈ2Í, . . ., decreases as t
grows within the predicted output. Nevertheless, this architecture is a starting point for
more advanced architectures.

A natural improvement is to make the context vector accessible for all steps in the decoder.
With such a setup, at each time the decoder is fed the concatenation of the previous output
and the code vector zı. A second improvement is to also present the code vector zı for
the computation of the output,8 where at this point the output computation is based on
a concatenation of the cell state, hÈtÍ, and the code zı. This architecture is depicted in
Figure 7.9 (b).

In the context of machine translation it is often useful to modify the encoder-decoder pair
such that the encoder accepts the text in reverse order. As an example, assume that the
input text is,

I am going to read another chapter.

Then with the text in reverse order paradigm, this input is fed to the encoder as,

chapter another read to going am I.

The training process then uses reverse order inputs as above, yet outputs are expected in the
normal order. Clearly when the model is used operationally, the input text is also reversed.

The benefit of this approach is in keeping inputs and their respective outputs closer on
average. For example, assume that we are translating from English to French where the
output should be (the non-reversed French text),

je vais lire un autre chapitre.

Note that with this approach the (reversed) input phrase going am I is near the output
phrase je vais (which means “I am going”), and similarly with other pairs. Whereas if the
text was not reversed, then generally (assuming inputs and outputs of the same length) the
distance between an input and the respective output is in the order of the length of the text.

Even when employing techniques such as reversal of the text, a key drawback of all of the
above encoder-decoder architectures is that performance degrades rapidly as the length of
the input sentence increases. This is because the encoded vector needs to capture the entire
input text, and in doing so, it might skip many important details. The attention mechanism
that we describe below, and its application in machine translation architectures, overcome
many of these di�culties.

8Having the code available to the output is in a sense a residual connection similar to the ResNets
discussed in Section 6.5. It is particularly useful if a stacked architecture is used in the decoder.

273

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

The Attention Mechanism

As we saw above, one of the key considerations in encoder-decoder architectures has to do
with the way in which the encoder output enters as input to the decoder. Towards this,
we now introduce a general paradigm called the attention mechanism. One may view the
attention mechanism as a method for “annotating” elements of the input or intermediate
sequences, which require more focus, or attention, than others. We first define attention
mathematically, and later we see how it can interplay within an encoder-decoder architecture.
The attention mechanism defined here is also central to transformer models which encompass
Section 7.5 below, and are used for most contemporary large language models.

In general, an attention mechanism can be viewed as a transformation of a sequence of
vectors to a sequence of vectors. The input sequence has Tin vectors and the output sequence
has Tout vectors. We assume the vectors are m dimensional and denote the input sequence
via vÈ1Í, vÈ2Í, . . . , vÈTinÍ and the output sequence via uÈ1Í, uÈ2Í, . . . , uÈToutÍ.

As an aid to the attention mechanism, we also have two sequences of vectors, which we
call the proxy vectors. These are denoted via zÈ1Í

q , . . . , zÈToutÍ
q , and zÈ1Í

k
, . . . , zÈTinÍ

k
, where

the dimension of each vector in the first sequence is mq, and similarly mk for the second
sequence. The notation using subscripts q and k stems from query and key respectively.
These terms, query and key, are more common in the application of transformer models in
the next section.

One of the components of the attention mechanism is a score function, also known as an
alignment function, s : Rmq ◊Rmk æ R which when applied to a pair of proxy vectors, zq and
zk and denoted via s(zq, zk), measures the similarity between the two proxy vectors. A typical
simple score function, suitable when mq = mk, is the inner product. Yet other possibilities,
also potentially with learned parameters, can be employed, and in some instances this
component is known as an alignment model. It is typical to have normalization as part of
the score function with a factor such as


max(mq, mk). This normalization maintains score

values at a reasonable range for numerical stability.

At the heart of the attention mechanism, for any time t = 1, . . . , Tout, we apply the score
function on a fixed zÈtÍ

q against all zÈ1Í
k

, . . . , zÈTinÍ
k

and then using softmax we obtain a vector
of attention weights, also known as alignment scores. This vector, denoted –ÈtÍ, is of length
Tin, and is computed via

–ÈtÍ = Ssoftmax

Q

cccca

S

WWWWU

s(zÈtÍ
q , zÈ1Í

k
)

s(zÈtÍ
q , zÈ2Í

k
)

...
s(zÈtÍ

q , zÈTinÍ
k

)

T

XXXXV

R

ddddb
, for t = 1, . . . , Tout. (7.20)

Here the vector to vector softmax function, Ssoftmax(·) is as defined in (3.25). The attention
weights associated with time t, can also be written as –ÈtÍ =

!
–ÈtÍ

1 , . . . , –ÈtÍ
Tin

"
. Thus in general,

for any t œ {1, . . . , Tout}, the attention weight vector –ÈtÍ captures similarity between the
proxy vector zÈtÍ

q and all of the proxy vectors zÈ1Í
k

, . . . , zÈTinÍ
k

.

With attention weights available, the attention mechanism operates on the input sequence
vÈ1Í, . . . , vÈTinÍ. The mechanism produces an output sequence uÈ1Í, . . . , uÈToutÍ where each

274

i
i

i
i

i
i

i
i

7.4 Encoders Decoders and the Attention Mechanism

uÈtÍ is computed via the linear combination,
Y
____]

____[

uÈtÍ =
q

Tin

·=1 –ÈtÍ
· vÈ·Í (Non-causal attention)

or

uÈtÍ =
q

t

·=1 –ÈtÍ
· vÈ·Í. (Causal attention)

(7.21)

Note that in the causal form the output at time t, uÈtÍ, only depends on the inputs up to
time t, while in the non-causal form uÈtÍ depends on inputs at all times t œ {1, . . . , Tin}.
Also note that the causal form is only possible when Tout Æ Tin (this is the case in the next
section where in particular we use Tout = Tin).

As we see below, this general mechanism is applied in various sequence model architectures
where in each case, the proxy vector sequences zÈ1Í

q , . . . , zÈToutÍ
q , and zÈ1Í

k
, . . . , zÈTinÍ

k
, and the

score function can be defined di�erently. Note that the attention mechanism can also be
employed for graph neural networks (GNN); see Section 8.5.

Encoder-Decoder with an Attention Mechanism

As a first application of the attention mechanism let us see an encoder-decoder framework.
This architecture is described in Figure 7.10 where an attention mechanism is used to
tie the encoder output with the decoder. A key attribute of the attention mechanism is
to provide more importance to some of the input words, in comparison to others, during
machine translation. There are two main ideas in this architecture. The first idea is to use
a bi-directional encoder, and importantly the second idea is to incorporate an attention
mechanism.

275

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

uhti = Attention[zhtiq = sht�1i, zk = (vh1i, . . . , vhTini), v = (vh1i, . . . , vhTini)]

Unit

Unit

Unit

Unit

...

...

Unit

Unit

Unit

Unit

... ...

Encoder

Decoder

vh1i

xh1i

vh2i

xh2i

vhTin�1i

xhTin�1i

vhTini

xhTini

<start> ŷht�1i ŷhti <stop>

sh1i sht�1i shti shTouti

Figure 7.10: An encoder-decoder model with a bi-directional encoder and tying of the encoder
and the decoder via an attention mechanism. The output sequence of the encoder is used as input
to the attention mechanism. In the attention mechanism the previous decoder state is used as a
query and the encoder outputs are used as keys.

The encoder is constructed via a bidirectional recurrent neural network, similar to Fig-
ure 7.7 (a) and the first two recursions in (7.14). Specifically for an input xÈ1Í, . . . , xÈTinÍ, we
obtain the sequences of encoder hidden states hÈ1Í

f
, . . . , hÈTinÍ

f
and hÈ1Í

r , . . . , hÈTinÍ
r , resulting

from the forward directional and reverse directional recursions, respectively. Note that LSTM
or GRU alternatives can be used in place of these forward and reverse recursions as well.

Now the output of the encoder is taken as a concatenation of the forward and reverse
direction. Specifically, we denote this encoder output via vÈ1Í, . . . , vÈTinÍ where vÈtÍ is a
concatenation of hÈtÍ

f
and hÈtÍ

r . Note that the encoder output is a sequence of vectors of
length Tin, namely the same length of the input sequence to the whole architecture.

The decoder is a variant of a recurrent neural network with hidden state sÈtÍ, following the
recursion, I

sÈtÍ = fdecoder
!
sÈt≠1Í, ŷÈt≠1Í, uÈtÍ"

ŷÈtÍ = fdecoder-out
!
sÈtÍ",

(7.22)

where uÈtÍ marks the input to the decoder and is computed via an attention mechanism as
we describe below. The other two inputs are sÈt≠1Í, the hidden decoder state at the previous
time step, and ŷÈt≠1Í, the output of the decoder at the previous time step.

276

i
i

i
i

i
i

i
i

7.4 Encoders Decoders and the Attention Mechanism

To see how the attention mechanism is used for computing uÈtÍ, observe our notation where
the encoder output is vÈtÍ and the decoder input at time t is uÈtÍ. This notation agrees with
the attention mechanism described above and in this architecture, an attention mechanism
tying the encoder and the decoder, converts vÈtÍ to uÈtÍ. Specifically, non-causal attention as
in (7.21) is used. For the attention computation, the proxy vectors determining the attention
weights via (7.20) are set as zÈtÍ

q = sÈt≠1Í and zÈtÍ
k

= vÈtÍ.

Observe that when the next decoder output token, ŷÈtÍ is created using (7.22), it is based on
the decoder state sÈtÍ which is based on the previous decoder state, on the previous decoder
output, and importantly, on the attention output uÈtÍ. This attention output is a linear
combination of all of the previous decoder outputs, weighted by the attention weights, –ÈtÍ

of time t.

The strength of this attention based architecture is that any input token can receive attention
during the construction of the output sequence, even if the construction is at a location in
the sequence far away from the input token. The application of a bi-directional architecture
for the encoder enables the model to capture earlier and later information which help
to disambiguate the input embedded word. The application of an attention mechanism
introduces a form of a dynamic context vector between the encoder and decoder, in place of
the static context vector zı used in the simpler architectures above. Namely, architectures
as depicted in Figure 7.9 have a fixed zı which does not change during the operation of the
decoder. The attention based approach replaces this fixed zı with the sequence uÈ1Í, uÈ2Í, . . .,
which itself depends on the decoder state (through the proxy zÈtÍ

q = sÈt≠1Í).

An Illustration of Attention Weights

Let us see parts of an illustrative toy example of English to French translation using the
encoder-decoder with attention architecture as in Figure 7.10. Assume the following:

Input: we love deep learning <stop>

Output: nous aimons l’ apprentissage en profondeur <stop>

Observe that in this case, we explicitly use the <stop> token, and assume that with our
tokenization and word embedding setup, each word or the <stop> token is a single vector.
Also note that l’ is considered a word. In this case we have Tin = 5 and as resulting from
the model, Tout = 7.

When the input is processed via the architecture of Figure 7.10, first the encoder creates
the sequences hÈ1Í

f
, . . . , hÈTinÍ

f
and hÈ1Í

r , . . . , hÈTinÍ
r . Then, a sequence where each element is a

concatenation of hÈtÍ
f

and hÈtÍ
r is fed into the attention mechanism. The attention and the

decoder operation run together, where with each additional time step of the output, (7.22) is
applied, and the attention computation of (7.21) takes place. Importantly, with each t, the
attention weights –ÈtÍ are computed via (7.20) where the proxy vector zÈtÍ

q is taken as the
previous decoder state, and the proxy sequence zÈ1Í

k
, . . . , zÈTinÍ

k
is taken as the concatenated

output of the encoder, summarizing all of the input text.

277

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

0.93

0.44

0.23

0.01

0.01

0.02

0.01

We

⌧ =1

0.02

0.46

0.26

0.04

0.02

0.01

0.01

love

⌧ =2

0.01

0.04

0.23

0.45

0.39

0.67

0.01

deep

⌧ =3

0.02

0.05

0.25

0.47

0.55

0.28

0.01

learning

⌧ =4

0.02nous t=1

0.01aimons t=2

0.03l' t=3

0.03apprentissage t=4

0.03en t=5

0.02profondeur t=6

0.96<stop> t=7

<stop>

⌧ =5

[↵hti
⌧] =

Figure 7.11: An attention matrix where each row is the attention vector –
ÈtÍ. When used in an

encoder-decoder, we may consider the attention in a row associated with time t as based on the
previous output. So for example for time t = 4, the available output from the decoder so far is an
encoding of nous aimons l’ and the attention vector –

È4Í dictates which encoded English words
to focus on (in this case deep at –

È4Í
3 and learning at –

È4Í
4).

Figure 7.11 illustrates possible values of the attention weights, as they are computed via the
machine translation process. The input is in English and the output is in French. Specifically,
each row of this matrix is an hypothetical vector of attention weights, –ÈtÍ, computed at time
t of the decoder; namely t = 1, . . . , Tout. Observe that each row sum is 1 and entries with
higher probabilities are emphasized. This sequence of attention weight vectors shows how
attention weights can adjust according to context. For example at time t = 4 in the decoder,
an encoding of the partial sequence nous aimons l’ is already available via zq = sÈ3Í. For
creation of the next word, apprentissage (which directly means “learning” in English),
most of the attention is put on the encoder hidden states associated both with deep and
with learning.

Variants of the Score Function

If we use the inner product score function, then we are constrained that the dimension of
the decoder hidden state, sÈtÍ be twice the dimension of each of the directional encoder
hidden states (this is the dimension of hÈtÍ

f
and hÈtÍ

r). However, as already stated, other score
functions are also possible. In each alternative, the score function operates on zq œ Rmq and
zk œ Rmk . These are common alternatives,

s(zq, zk) =

Y
]

[

z€
q

Ws zk, (General)
w€

s
tanh(ÊWs[zq, zk]), (Concatenation)

w€
s

tanh(Wsa zq + Wsb zk). (Additive)

278

i
i

i
i

i
i

i
i

7.5 Transformers

Each of these score function alternatives has parameters that are learned during training.
In the first case the parameter matrix is Ws œ Rmq◊mk . In the second case, the parameter
vector ws is m̃ dimensional, and the parameter matrix is ÊWs œ Rm̃◊(mq+mk). Note that in
this case [zq, zk] denotes a concatenation of the two vectors. In third case, Wsa œ Rm̃◊mq

and Wsb œ Rm̃◊mk and again ws is a m̃ dimensional vector. In each of these cases tanh is
applied element wise.

Training Encoder-Decoder Models

Continuing with the application of machine translation we now consider various approaches
for training encoder-decoder models. Assume we are training models as in the architectures
of Figure 7.9 (a) and (b) as well as Figure 7.10. Our discussion here is also relevant for
training transformer encoder-decoder models presented in the next section (Figure 7.16).

As input data we have n sequences in the source language (e.g., English), where each
sequence, denoted via x(i) is already encoded into vectors xi,È1Í, . . . , xi,ÈT

i
xÍ, using some

word embedding technique (e.g., word2vec or some more advanced variant). Similarly we
have n sequences in the target language (e.g., French), where in this case, each sequence
y(i) is one-hot encoded into vectors yi,È1Í, . . . , yi,ÈT

i
yÍ, according to the lexicon of the target

language. Clearly we assume that for any i, the pair of sequences x(i) and y(i) have the same
semantic meaning.

For a given set of parameters, when feeding an input sequence x(i) into the encoder-decoder
architecture, we are presented with an output sequence ŷ(i) where each element ŷi,ÈtÍ is a
probability vector in the lexicon of the target language. We then use cross-entropy loss,9
comparing ŷ(i) to y(i), summing over all elements of the sequence, similarly to (7.4) and
(7.5); see also the discussion around Figure 7.5 in Section 7.2. One may also use mini-batches
over multiple sequences, where for each mini-batch backpropagation (or backpropagation
through time) is applied, and then a variant of gradient descent is used, similarly to any
other deep learning model.

Teacher forcing, as discussed at the end of Section 7.2 is very commonly used when training
encoder-decoder models. For example in the encoder-decoder with an atttention architecture
of Figure 7.10, during training we replace ŷÈt≠1Í by yÈt≠1Í in (7.22), and similarly for the
other encoder-decoder models.

Note also, that once an encoder-decoder model is trained, we may sometimes fine tune either
the encoder, or decoder, by freezing the layers of one of the components while training the
other component. Also, it is common to freeze both the encoder and decoder, and only fine
tune an output layer on top of the decoder.

7.5 Transformers
We now introduce a family of models called transformers. The transformer architecture
was originally introduced to handle machine translation and has since found applications
in many other paradigms including large language models, but also non sequence data

9A minor technical issue is that often the lengths of ŷ
(i) and y

(i) may di�er. In such a case, the shorter
sequence is padded with <empty> tokens and no loss is incurred at time t if both the predicted and training
sequences have an <empty> token at time t.

279

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

domains such as images. The approach we present here continues to focus on the machine
translation application, yet the reader should keep in mind that transformers have much
wider applicability.

Transformers mark a paradigm shift in dealing with sequence data, as the architecture is no
longer of a recurrent nature, but rather works using parallel computation. That is, while
recurrent neural networks, LSTMs, GRUs, and other variants discussed in earlier sections
may seem natural for sequence data, with transformers we return to fixed length input-output
schemes. Similarly to the feedforward networks of Chapter 5 or the convolutional networks
of Chapter 6, transformers operate on inputs of a fixed length, and yield outputs of a fixed
length. Nevertheless, note that transformer decoders are used in an auto-regressive manner
with a variable number of iterations.

In the context of sequence data, when using transformers, sequences are converted to have
fixed length by padding with representations of <empty> tokens at the end of the sequence,
when needed. Similarly if the input or output exceed the dimensions, mechanisms external
to the transformer are used to raise an error, break up the computation, truncate the input,
or carry out similar workarounds.

As a simple illustration, return to the English to French translation example from the
previous section and as a toy example, assume that the transformer input and output
dimensions are both 9. In this case, we can expect the padded input and output to be,

Input: we love deep learning <stop> <empty> <empty> <empty> <empty>
Output: nous aimons l’ apprentissage en profondeur<stop> <empty> <empty>

While the abandonment of variable length inputs and outputs may seem like a step back from
recurrent neural networks, transformers have shown great benefits in performance. In addition
to yielding state of the performance on many language benchmarks, these architectures
enable parallel computation which is not possible with recurrent neural networks.

The transformer architecture that we introduce here inherits the encoder-decoder pattern
used in the previous section, and is well suited for machine translation. Note however that
for other tasks, one may sometimes only use the encoder part of the transformer, the decoder
part, or slight variants of the architecture that we present here. The key mechanism used in
transformers is attention, with various forms of the attention mechanism interconnected in a
novel way.

In our overview of transformers, we first describe the notion of self attention. We then
describe multi-head self attention, often called multi-head attention in short. We then
describe positional embeddings and then move onto introducing the transformer block which
is the basic building block of the transformer architecture both for the encoder and the
decoder. We close the section with an outline of the transformer encoder-decoder architecture
followed by a discussion of how transformers are used in production and training.

Self Attention

We have already seen the general attention mechanism in equation (7.21) which transforms
a sequence vÈ1Í, . . . , vÈTinÍ to an output sequence uÈ1Í, . . . , uÈToutÍ, using linear combinations
with attention weights –ÈtÍ

· . The attention weights are defined in equation (7.20) and are

280

i
i

i
i

i
i

i
i

7.5 Transformers

based on the score function applied to the proxy vectors, denoted zÈ1Í
q , . . . , zÈToutÍ

q , and
zÈ1Í

k
, . . . , zÈTinÍ

k
.

In the context of the transformer architecture, we refer to the proxy vectors zÈtÍ
q as queries,

we refer to the proxy vectors zÈtÍ
k

as keys, and we refer to the input vectors vÈtÍ as values.
This terminology is rooted in information retrieval systems and captures the fact that when
we compute an attention vector –ÈtÍ, we are “searching” via (7.20) for a query represented
via zÈtÍ

q against all keys zÈ1Í
k

, . . . , zÈTinÍ
k

. Then the attention weights are used to combine the
“search results” via (7.21).

The mechanism of self attention, illustrated in Figure 7.12, is a form of attention where we
convert an input sequence xÈ1Í, . . . , xÈTinÍ to an output uÈ1Í, . . . , uÈToutÍ, with T = Tin = Tout.
In the simplest form (ignore blue in Figure 7.12) we set the queries, the keys, and the values
directly as elements of the input. Namely,

zÈtÍ
q

= xÈtÍ, zÈtÍ
k

= xÈtÍ, vÈtÍ = xÈtÍ, (Simple self attention)

and this implies that in the causal form (ignore red in Figure 7.12), with score function
s(·, ·), the self attention mechanism yields output for any time t œ {1, . . . , T}, via,

uÈtÍ =
ÿ

·Æt

–ÈtÍ
·

xÈ·Í, with –ÈtÍ
·

= es(x
ÈtÍ

,x
È·Í)

q
t

tÕ=1 es(xÈtÍ,xÈtÕÍ)
. (7.23)

281

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

+

uhti

↵
hti
1

xh1i

⇥

↵
hti
2

xh2i

⇥ . . .

↵
hti
⌧

xh⌧i

⇥ . . .

↵
hti
t

xhti

⇥
Wv Wk

Wq

. non-

casual

Attention
Weights:

Input:

Figure 7.12: The flow of information in self attention. Ignoring the blue and the red, this is causal
simple self attention where the output at time t, u

ÈtÍ is a linear combination of x
È1Í

, . . . , x
ÈtÍ with

attention weights –
ÈtÍ
1 , . . . , –

ÈtÍ
t

. Considering the blue, this is more versatile self attention where each
attention weight –

ÈtÍ
· is computed using weighting matrices Wk and Wq of the input, and where the

linear combination is of weighted inputs with Wv. Considering also the red, it is non-causal.

A more versatile form of self attention, this time involving learned parameters, has queries,
keys, and values that are not directly taken as the input, but are rather linear transformations
of the input. Namely,

zÈtÍ
q

= WqxÈtÍ, zÈtÍ
k

= WkxÈtÍ, vÈtÍ = WvxÈtÍ, (More versatile self attention)

where the learnable parameter matrices Wq, Wk, and Wv are each p ◊ p dimensional,10 with
p the dimension of each xÈtÍ. Hence in this case, the attention mechanism has output for
any time t œ {1, . . . , T}, via,

uÈtÍ =
ÿ

·Æt

–ÈtÍ
·

Wv xÈ·Í, with –ÈtÍ
·

= es(Wq x
ÈtÍ

,Wk x
È·Í)

q
t

tÕ=1 es(Wq xÈtÍ,Wk xÈtÕÍ)
. (7.24)

Observe that that in (7.23) and (7.24) we use the causal form from (7.21). An alternative
non-causal form is also applicable (consider also the red part of Figure 7.12). In such a
case, the summations are not on · Æ t but are rather on · œ {1, . . . , T}, similarly to the
non-causal form appearing in (7.21).

10Note that here we use the same dimension for the input, the output, and the proxy vectors. More
generally one may set di�erent dimensions for these entities, as we do in the case of multi-head attention
below.

282

i
i

i
i

i
i

i
i

7.5 Transformers

Multi-Head Self Attention

A generalization of self attention is to use multiple self attention mechanisms in parallel and
then combine the outputs of these mechanisms. With this parallelism, we can treat each
individual attention mechanism as searching for a di�erent set of features in the input, and
then have information content of the output as a combination of the derived features.

xh1i xh2i · · · xhti · · · xhT i

uh1i uh2i · · · uhti · · · uhT i

W 1
q

W 1
k

W 1
v

Head 1

WH

q
WH

k
WH

v

Head H

u1,h1i · · · u1,hti · · · u1,hT i uH,h1i · · · uH,hti · · · uH,hT i

WH

c
W 1

c

.

Figure 7.13: Multi-head self attention is the parallel application of H attention heads, where head
h has parameter matrices W

h

q , W
h

k , and W
h

v . Each head h operates on the full input, x
È1Í

, . . . , x
ÈT Í

and results in output for the head, u
h,È1Í

, . . . , u
h,ÈT Í. When determining the output of the whole

multi-head self attention mechanism, each output at time t, denoted u
ÈtÍ combines u

1,ÈtÍ
, . . . , u

H,ÈtÍ

weighted by W
1
c , . . . , W

H

c .

Figure 7.13 illustrates multi-head self attention. Specifically, assume we have H self attention
mechanisms, where mechanism h œ {1, . . . , H} has its own set of parameter matrices W h

q
,

W h

k
, and W h

v
. Here W h

q
œ Rm◊p, W h

k
œ Rm◊p, and W h

v
œ Rmv◊p, where m is the dimension

of the query and the key (m = mq = mk), p is the dimension of the input xÈtÍ as previously,
and mv is the dimension of the value (and the output of the individual attention head).

At first, each attention head h operates independently similarly to (7.24), yielding an output
sequence uh,È1Í, . . . , uh,ÈT Í of mv dimensional vectors. This operation is via,

uh,ÈtÍ =
Tÿ

·=1
–h,ÈtÍ

·
W h

v
xÈ·Í, with –h,ÈtÍ

·
= es(W

h
q x

ÈtÍ
,W

h
k x

È·Í)

q
t

tÕ=1 es(W h
q xÈtÍ,W

h
k

xÈtÕÍ)
. (7.25)

Note that in (7.25) we use a non-causal form of attention, in contrast to the causal form
appearing in (7.24). Below we comment on how one may practically convert such a non-causal
form to a causal form via a mechanism called masked self attention.

Now for any time index t, we have H vectors u1,ÈtÍ, . . . , uH,ÈtÍ which we use to produce
the output of the multi-head attention for the specific time index t. For this we apply an
additional linear transformation to each vector, converting it from dimension mv back to
dimension p. We then sum up over h = 1, . . . , H. Thus, the output of the multi-head self

283

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

attention mechanism is

uÈtÍ =
Hÿ

h=1
W h

c
uh,ÈtÍ, (7.26)

where for each h, the matrix W h

c
is p ◊ mv dimensional. Each W h

c
captures the transformation

from the single attention output uh,ÈtÍ of dimension mv to dimension p. The combination of
these H matrices can also capture weightings between the attention heads.

Multi-head self attention plays a central role in transformer blocks, both in the encoder
and the decoder. In certain cases such as the encoder, we use the non-causal form, as in
(7.25). However, in other cases, such as the decoder, we use a causal form. Practically we
may enforce a causal form via masked self attention, also known as masking for short. With
this approach, for a computation of attention weights at time t, we set entries of the (key)
proxy vectors of times after time t to negative infinity. That is,

zÈt+1Í
k

= ≠Œ, zÈt+2Í
k

= ≠Œ, . . . , zÈT Í
k

= ≠Œ. (Masking) (7.27)

Then with this masking, through the softmax computation, the ≠Œ values yield zeros for
each of –ÈtÍ

t+1, –ÈtÍ
t+2, . . . , –ÈtÍ

T
, and thus, when computing the output at time t, no attention is

given to future times.

Implementing causality via masking is especially important when one considers a matrix
representation of the multi-head self attention mechanism. Specifically, one may treat the
input as a matrix X of dimension p ◊ T and then represent all of the attention operations as
matrix on matrix operations. While we omit the details of such a representation, the reader
should keep in mind that unlike recurrent neural networks where time t implies a step in
the computation, for transformers time t is simply a dimension of the input matrix X and
operations can be parallelized based on the equations above.

Positional Embeddings

Sequence models have a natural time index, t, where xÈtÍ followed by xÈt+1Í, embodies some
relationship between the two vectors in the sequence. As a simple example consider some
input text, deep learning, and the reverse text, learning deep. These two short sequences
have di�erent semantic meaning, since the order matters. However, as is evident from the
multi-head self attention mechanism (7.25), the order in the input sequence xÈ1Í, . . . , xÈT Í is
not captured by the mechanism at all. This stands in stark contrast to previous sequence
models such as recurrent neural networks and their generalizations, where the recurrent
nature of the model makes use of sequence order.

Hence, for using non-causal multi-head self attention e�ectively, we require a mechanism for
encoding the order of the sequence in the input data. Such mechanisms are generally called
positional embeddings. A basic and primitive form of positional embedding is to extend each
input vector xÈtÍ with an additional one-hot encoded vector that captures its position in the
sequence. For example for a sequence of length T = 4, we extend xÈ1Í with e1 = (1, 0, 0, 0),
extend xÈ2Í with e2 = (0, 1, 0, 0), and so forth. Then the input sequence is no longer taken
as having vectors of length p, but rather as having vectors of length p̃ = p + T .

To further illustrate the point using the toy one-hot encoding positional embedding example
with p = 2 and T = 4, assume the first vector is xÈ1Í = (0.2, ≠1.3) and assume that as a

284

i
i

i
i

i
i

i
i

7.5 Transformers

matter of coincidence the last vector xÈ4Í has the same values. Then after applying such
positional embedding, the vectors are transformed to

x̃È1Í = (0.2, ≠1.3, 1, 0, 0, 0¸ ˚˙ ˝
e1

) and x̃È4Í = (0.2, ≠1.3, 0, 0, 0, 1¸ ˚˙ ˝
e4

),

and then when these positionally embedded vectors are processed by non-causal multi-head
self attention, the model can distinguish between x̃È1Í and x̃È4Í. Even in the (more common)
case where di�erent vectors will not have repeated values, the order in the sequence is still
encoded and this enhances performance.

However, this type of encoding is clearly wasteful and ine�cient, yielding an excessively
large p̃. A more advanced form is to encode the vectors and the embeddings jointly. For
example, one might use a transformation such as

x̃ÈtÍ = W1S
1

W2xÈtÍ + W3et + b
2

œ Rp̃, (7.28)

where W1 œ Rp̃◊p̃, W2 œ Rp̃◊p, and W3 œ Rp̃◊T are learnable weight matrices, b œ Rp̃ is a
learnable bias vector, and S(·) is some vector activation function such as for example ReLU
applied element wise. In this case, we may just use p̃ = p, yet larger p̃ are also possible.

With this type of encoding, after training the parameters, positional embeddings are ideally
encoded within the word vectors. This is similar to how vector representations encode words
from a dictionary into a lower dimensional space when using word embeddings.

With the introduction of transformers, a di�erent type of positional encoding, motivated
by Fourier analysis, was popularized. With this approach we set some p̃ > p and denote
pe = p̃ ≠ p. That is, pe is the increase of dimension from the original encoding in Rp to the
new encoding in Rp̃. Assume also that pe is even. Unlike the trained positional encoding in
(7.28), here we just use sines and cosines without any trainable parameters.

Specifically for i œ {0, . . . , pe

2 ≠ 1}, and t œ {1, . . . , T} we set,

rÈtÍ
2i

= sin
3

t

M2i/pe

4
, rÈtÍ

2i+1 = cos
3

t

M2i/pe

4
, (7.29)

where a common value for M is 10, 000. The vector with positional embedding is then,

x̃ÈtÍ = (xÈtÍ
1 , . . . , xÈtÍ

p
,

sin˙˝¸˚
rÈtÍ

0 ,

cos˙˝¸˚
rÈtÍ

1 ,

sin˙˝¸˚
rÈtÍ

2 , . . . ,

cos˙ ˝¸ ˚
rÈtÍ

pe≠1¸ ˚˙ ˝
positional embedding

).

285

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

(a) (b)

Figure 7.14: The sine and cosine based positional embedding as in (7.29). (a) A heat map of r
ÈtÍ
j

with pe = 768 and T = 4000 plotted for t only over the first 60 time indexes for j only over the first
200 positions in the embedding vector. Positive values are yellow and negative values are blue. (b)
A comparison of the positional embeddings at the time index t = 50 and t = 51 via a plot of the
di�erence. As is evident, there is a significant di�erence marked by around the first hundred vector
positions.

One may then also reduce the dimension back from p̃ to a lower dimension in similar vein to
(7.28). Specifically one common simplistic approach which has empirically worked well is,

x̃ÈtÍ = (xÈtÍ
1 + rÈtÍ

0 , xÈ2Í + rÈtÍ
1 , . . . , xÈtÍ

p
+ rÈtÍ

p≠1) œ Rp, (7.30)

where here pe = p.

The benefit of using positional embedding such as (7.30) first arises from the fact that
sines and cosines are bounded within [≠1, 1] and is further aided by the idea of a Fourier
representation of the position. In particular, consider Figure 7.14 where (a) illustrates
embedding values from (7.29). By adding a vertical slice (for fixed t) of the embedding values
(7.29) to the original xÈtÍ vector, we enable the model to distinguish the time value from
typical other values. This is particularly evident by considering (b) where we compare two
neighbouring time steps by plotting their di�erence.

The Transformer Block

The basic building block of the transformer architecture is a unit called a transformer block
which is used multiple times within a transformer, interconnected in series, both in the
encoder and the decoder. There are several variations of transformer blocks and here we
focus on the basic block used in the encoder. Later when we describe the decoder architecture
we highlight di�erences.

286

i
i

i
i

i
i

i
i

7.5 Transformers

ah1iout - - - ahT i
out

+

uh1i
[3] - - - uhT i

[3]

Feed Forward
Network

uh1i
[2] - - - uhT i

[2]

+

uh1i
[1] - - - uhT i

[1]

Multi-Head
Self Attention

ah1iin - - - ahT i
in

Layer Norm

Layer Norm

(a)

ah1iout - - - - ahT i
out

+

uh1i
[5] uhT i

[5]

Feed Forward
Network

uh1i
[4] - - - - uhT i

[4]

+

uh1i
[3] - - - - uhT i

[3]

Multi-Head
Cross Attentionz?

uh1i
[2] - - - - uhT i

[2]

+

uh1i
[1] uhT i

[1]

Multi-Head
Self Attention

ah1iin - - - - ahT i
in

Layer Norm

Layer Norm

Layer Norm

(b)

Figure 7.15: Architecture of transformer blocks. (a) A single transformer block. The input ain
passes through a multi-head self attention layer, followed by a feedforward layer. Layer normalization
and residual connections are applied in these steps as well. (b) A transformer decoder block. In
addition to the components of a transformer block, it also has a multi-head cross attention layer
that is fed the context vector z

ı.

We denote the input of a transformer block as ain and the output as aout where both
ain and aout are p ◊ T matrices. Thus in general, we can view the block as a function
f◊ : Rp◊T

æ Rp◊T , where ◊ represents trained parameters of the block and aout = f◊(ain).
For example, the encoder of the transformer architecture has a first transformer block that
operates on input,

ain =
#
x̃È1Í, . . . , x̃ÈT Í$,

287

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

where each column is a positional encoding vector as in (7.30). Then the output of this
block, aout, is fed into a second transformer block in the encoder, and so forth. Common
architectures have an encoder composed of a sequence of half a dozen or more transformer
blocks. Thus for example the input of the second transformer block has ain set as the aout
of the first block, etc.

A transformer block has several internal layers with the two main layers being a multi-head
self attention layer, and downstream to it, a feedforward layer. Each of these also utilizes a
residual connection and a normalization layer. A schematic of a typical transformer block
is in Figure 7.15 (a). The main idea of the transformer block is to enhance multi-head self
attention with further connections using the feedforward layer. The residual connections
enhance training performance, similar to ResNets discussed in Section 6.5. Normalization, in
the form of layer normalization, stabilizes training and production performance by ensuring
that values remain in a sensible dynamic range. We now present the details of a block.

Let us denote the columns of the input ain as aÈ1Í
in , . . . , aÈT Í

in . The first step of the block with
multi-head self attention is to employ (7.25) for every head h = 1, . . . , H, and then (7.26)
where in these equations xÈtÍ is replaced by aÈtÍ

in . The output of this multi-head self attention
layer is then denoted uÈ1Í

[1] , . . . , uÈT Í
[1] , where we use the subscript [1] to indicate it is an output

of the first layer.

We then apply residual connections and layer normalization to each of uÈ1Í
[1] , . . . , uÈT Í

[1] yielding
uÈ1Í

[2] , . . . , uÈT Í
[2] . This step can be summarized as.

uÈtÍ
[2] = LayerNorm

!
aÈtÍ

in + uÈtÍ
[1]¸ ˚˙ ˝

Residual connection

; “, —
"
. (7.31)

Here, the LayerNorm(·) operator is defined for z œ Rp with parameters “, — œ Rp, via,

LayerNorm(z ; “, —) = “ §
(z ≠ µz)

‡2
z

+ Á
+ —,

where

µz = 1
p

pÿ

i=1
zi, and ‡z =

ı̂ıÙ1
p

pÿ

i=1
(zi ≠ µz)2,

Á > 0 is a small fixed quantity that ensures that we do not divide by zero, and the addition,
division, and square root operations are all element-wise operations.

Layer normalization is somewhat similar to batch normalization, outlined in Section 5.6, and
group normalization outlined in Section 6.4. A major di�erence between layer normalization
and batch normalization is that for batch normalization we obtain the mean and standard
deviation per feature over a mini batch, whereas with layer normalization we use a single
sample, yet compute statistics over all features (of a single feature vector). In both cases,
the normalization forces feature values to remain at normalized values, further aided by the
learnable parameter vectors “ and —.

The next step in the transformer block is the application of a fully connected neural network
on each uÈtÍ

[2] to yield uÈtÍ
[3] . Note that the same learnable network parameters are used for each

288

i
i

i
i

i
i

i
i

7.5 Transformers

t œ {1, . . . , T}. Commonly this network has a single hidden layer with non-linear activation,
followed by a layer with linear (identity) activation,11 yet there are other possibilities as
well. Sticking with the commonly used architecture we have,

uÈtÍ
[3] = W [2]S(W [1]uÈtÍ

[2] + b[1]" + b[2],

where S(·) is commonly an element wise application of ReLU. Here we denote the dimension
of the inner layer as N1 and the learnable parameters are b[1]

œ RN1 , b[2]
œ Rp, W [1]

œ RN1◊p,
and W [2]

œ Rp◊N1 .

Finally, to yield the output of the transformer block, we apply residual connections and
layer normalization in the same manner as (7.31). Specifically we use,

aÈtÍ
out = LayerNorm

!
uÈtÍ

[2] + uÈtÍ
[3] ; “̃, —̃

"
,

where here “̃, —̃ œ Rp are trainable parameters for this layer normalization.

Note that when considered as a variation of a neural network, one may view a transformer
block as “wide and shallow”. Even though such a single transformer block is not deep, the
residual connections provide direct access to the previous levels of abstraction and enable
the levels above to infer more fine grained features without having to remember or store
previous ones.

Let us summarize the learned parameters of a single transformer block with dimensions p
for the vector length, T for the sequence length, H for the number of self attention heads,
mv for the dimension inside each self attention block, and m for the dimension of the query
and key inside each self attention block. In this case, the total number of parameters is,

4 p¸˚˙˝
“,—,“̃,—̃

+ 2 N1p¸ ˚˙ ˝
W [1],W [2]

+ N1 + p¸ ˚˙ ˝
b[1],b[2]

+ H ◊ (2 m p¸ ˚˙ ˝
W

h
k

and W h
q

+ 2 mv p¸ ˚˙ ˝
W h

v and W h
c

). (7.32)

As a quantitative example, agreeing with the first transformer architecture introduced in
2017,12 let us consider a case with p = 512, N1 = 2048, m = mv = 64, and H = 8. In
this case there are just over 3 million learnable parameters for such a transformer block.
Specifically (7.32) evaluates to 3, 150, 336. As we see now, multiple transformer blocks are
typically connected, yielding architectures with many millions of parameters.

Putting the Bits Together Into an Encoder-Decoder Framework

Now that we have seen the design of the transformer block, we are ready to interconnect
such blocks in an encoder, and also interconnect variations of this block in a decoder.
We now describe a basic transformer encoder-decoder architecture using such blocks and
interconnections. It is useful to recall the more classical encoder-decoder architectures as
appearing in (a) and (b) of Figure 7.9. A transformer architecture is somewhat similar to
the architecture in (b), since the output of the encoder is fed into each of the decoder steps.

11Incidentally, this two-layer architecture with an activation function only in the single hidden layer, is
the same network used in Theorem 5.1 of Chapter 5.

12See the “Attention is all you need” paper [410], as well as other notes and references at the end of the
chapter.

289

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

However, unlike the architectures in Figure 7.9, transformers do not process one word at a
time. A schematic of a transformer encoder-decoder architecture is in Figure 7.16.

ah1iout ahT i
out ŷh1iout ŷhT i

out

Transformer
Block

Transformer
Decoder Block

.

.

.

.

.

.

Transformer
Block

Transformer
Decoder Block

Transformer
Block

Transformer
Decoder Block

x̃h1i
in x̃hT i

in ỹh1iout ỹhT i
out

xh1i
in xhT i

in yh1iout yhT i
out

Positional Embedding Positional Embedding

Encoder Decoder

z?

Figure 7.16: An encoder-decoder transformer architecture. The encoder is composed of multiple
transformer blocks, and the decoder is composed of multiple transformer decoder blocks. Each block
in the decoder is fed the code z

ı. The loop from the output of the decoder going back into the input
of the decoder illustrates the auto-regressive application of transformer decoders.

Transformer encoders simply stack the transformer blocks in series, where each block has
exactly the specifications described above as in Figure 7.15 (a). The first block is fed with
the positional encoded input, and the output of that block goes into the second block, and so
forth. The output of the encoder is aÈ1Í

out, . . . , aÈT Í
out resulting from the last transformer block.

We also denote this output via zı as it describes a code, and thus for each position t we
denote the encoder output via zıÈtÍ.

Transformer decoders use a variation of the transformer block which we call the trans-
former decoder block, illustrated in Figure 7.15 (b). This block architecture di�ers from the
transformer block specified above in two ways. First, the multi-head self attention layer is
causal. This is implemented via masking as in (7.27). Such causality prevents attendance
of future positions as suitable for auto-regressive prediction. Second, an additional layer,
called a cross attention layer, is used between the causal multi-head self attention and the

290

i
i

i
i

i
i

i
i

7.5 Transformers

feedforward layer. The new cross attention layer is handled with layer normalization and
residual connections, similar to the other two layers.

In addition to the flow of information within the transformer decoder block, the cross
attention layer is fed with the encoder output zı. This is similar to the encoder-decoder
architecture in Figure 7.9 (b), and it allows the transformer decoder block to directly
incorporate the encoder’s code. Transformer decoders are constructed by stacking several
transformer decoder blocks in sequence, similarly to the stacking in the encoder, where
each block gets the same zı. Similar to the encoder, the first block operates on positional
embedded inputs. Further discussion of what these inputs are, is in the following subsection.
On top of the final transformer decoder block (not illustrated in Figure 7.16), we add an
additional layer transforming each output vector to a token. This is similar to the outputs
of other encoder-decoder architectures. Often it is simply a linear layer with a softmax (i.e.,
a multinomial regression as in Section 3.3).

The cross attention layer inside each transformer decoder block is in fact a multi-head cross
attention layer and follows equations similar to (7.25) and (7.26), with the di�erence being
that the key and value inputs are the decoder output zı. Specifically, if we denote the input
to the multi-head cross attention layer from earlier layers as ũÈ1Í, . . . , ũÈT Í, then the self
attention equation (7.25) is now modified to have cross attention (between zı and the input
to the layer ũ). This attention computation for head h is then,

uh,ÈtÍ =
Tÿ

·=1
–h,ÈtÍ

·
W h

v
zıÈ·Í, with –h,ÈtÍ

·
= es(W

h
q ũ

ÈtÍ
,W

h
k z

ıÈ·Í)

q
t

tÕ=1 es(W h
q ũÈtÍ,W

h
k

zıÈtÕÍ)
, (7.33)

followed by a combination of the heads using (7.26).

Observe that this pattern of cross attention is similar to the earlier encoder-decoder with
an attention mechanism architecture presented in Figure 7.10. In the earlier architecture,
the proxy vector zÈtÍ

q used the previous decoder state, somewhat similarly W h

q
ũÈtÍ in (7.33).

Further, in the earlier architecture, the proxy vector zÈtÍ
k

is the same vector used as input to
the attention mechanism. This agrees with using the decoder output, zı as key and value
inputs in (7.33).

Now after highlighting the di�erences between a transformer block as in Figure 7.15 (a),
and the transformer decoder block in Figure 7.15 (b), we can briefly summarize the layers
and steps of the transformer decoder block. The matrix of inputs to each block, with each
input vector denoted aÈtÍ

in , is first processed with causal multi-head self attention to yield
uÈ1Í

[1] , . . . , uÈT Í
[1] . Now exactly as in (7.31), layer normalization and residual connections yield

uÈ1Í
[2] , . . . , uÈT Í

[2] . Then this sequence of vectors (or matrix) is processed via the multi-head cross
attention layer using (7.33) and (7.26), where ũÈtÍ is uÈtÍ

[2] , and the encoder output zı is put
to use. The result is uÈ1Í

[3] , . . . , uÈT Í
[3] . Then layer normalization and residual connections are

applied again yielding uÈ1Í
[4] , . . . , uÈT Í

[4] . This sequence is now fed into the feedforward layer, to
yield uÈ1Í

[5] , . . . , uÈT Í
[5] . Finally, each uÈtÍ

[5] is again applied with layer normalization and residual
connections to yield the output aÈtÍ

out. There are 6 steps here, in comparison to the 4 steps
used in the transformer block of the encoder.13

13We count layer normalization and residual connection as a single step.

291

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

The parameters of each transformer decoder block include those of the transformer block
from Figure 7.15, as well as parameters resulting from the multi-head cross attention layer
and its normalization. Specifically, for the decoder, the parameter count in (7.32) needs to
be augmented with an additional H ◊ (2mp + 2mvp) term for the multi-head cross attention
as well as 2p for the additional normalization parameters. As an example, using the same
dimensions as above, we now have over 4 million parameters, or 4, 199, 936 exactly, for a
transformer decoder block.

If we now consider an encoder-decoder transformer architecture with 6 transformer blocks in
the encoder and 6 transformer decoder blocks in the decoder, then the number of parameters
in the encoder is about 19 million, and the number of parameters in the decoder is about
25 million. As mentioned above, we also require an additional layer on top of the decoder,
transforming each output vector to a token (for example to a natural language word or part
of it). This is simply a linear layer with a softmax (i.e., a multinomial regression). This
type of layer is needed at the end of any pipeline that generates text. If we assume that
the number of word tokens14 is dV ¥ 37, 000, then the number of parameters of the final
multinomial regression is dV ◊ p + p, which is about 19 million parameters in our case. Hence
putting the pieces together we have about 63 million parameters in the whole model.15

The encoder-decoder transformer model is the cornerstone of large language models, and
indeed by 2023, models with up to half a trillion parameters are already in use. Such
parameter count is about 100 times more parameters than the size of the transformer
discussed above.

Using the Encoder-Decoder in Production and Training

In our description of the encoder-decoder architecture above, except for indicating that
positional embedding is applied, we did not specify the decoder inputs. The way that decoder
inputs are used depends on the task at hand, and the form of the inputs varies between
production and training. We now present the details.

First in production (inference or test-time), note that we use the decoder in an auto-regressive
manner as in Figure 7.17. Specifically, the code from the encoder zı is presented to the
decoder and we iterate executions of the decoder until a <stop> token (or word) is realized.
In the first iteration we set the input sequence to the decoder to only have a <start> token
embedding, and then with every iteration we present the output sequence up to the previous
iteration as input to the decoder. That is, at iteration t, the decoder computation can be
represented as

ŷÈtÍ = fdecoder
!
zı, (˜̂yÈ1Í, . . . , ˜̂yÈt≠1Í)

"
, (7.34)

where zı is the code vector from the encoder, and ˜̂yÈtÍ is an embedded and positionally
embedded vector, resulting from the decoder output token ‚YÈtÍ. The transformation from the
decoder output ŷÈtÍ to the decoder output token ‚YÈtÍ, can naively be done via an argmax as
in (3.34) in Chapter 3, or by sampling tokens according to the probability output ŷÈtÍ. More
advanced multi-step techniques such as beam search can also be employed, where several
consecutive tokens are considered together; we omit the details. In summary, as we see in
(7.34), the transformer decoder output at time t is a function of its previous outputs while
the first input ˜̂yÈ1Í is an embedded and positionally embedded representation of <start>.

14This is a common tokenization dimension and was used in the original transformers paper.
15The first introduced transformer architecture, [410], is estimated to have used about 65 million

parameters. Such relatively small discrepancies are due to implementation.

292

i
i

i
i

i
i

i
i

7.5 Transformers

Transformer
Encoder

We love deep learning <stop>

z?

Transformer
Decoder

<start>

<start> nous

Transformer
Decoder

<start> nous

<start> nous aimons

z?
.
.
.

z?
.
.
.

Figure 7.17: Auto-regressive application of a transformer decoder block for machine translation.
The transformer encoder runs once on the whole input English sentence, creating the code z

ı. This
code is then used with every iteration of the transformer decoder block, where with each iteration an
additional word (or token) is created, and the previous output is fed as input in an auto-regressive
manner. Generation stops (not illustrated in figure) when a <stop> token appears at the output.

Now considering training, a natural naive approach is to use (7.34) directly in each forward
pass and backward pass iteration, when computing gradients. Namely, to use backward
propagation through time. However, (7.34) naturally lends itself to use teacher forcing,
similarly to the use of teacher forcing when training other encoder-decoder models, as
discussed at the end of Section 7.4. With this approach, (7.34) is converted to

ŷÈtÍ = fdecoder
!
zı, (ỹÈ1Í, . . . , ỹÈt≠1Í)

"
,

where now the training data one-hot encoded labels yÈ1Í, . . . , yÈtÍ, in their embedded and
positionally embedded form, ỹÈ1Í, . . . , ỹÈtÍ, are used as input to the transformer decoder
instead of the predictions. This teacher forcing technique accelerates training by removing
error during early phases of the process. Further, an important di�erence in teacher forcing
of transformers vs. teacher forcing of recurrent encoder-decoder frameworks, is that with
transformers we can exploit parallelization. Specifically, for the forward pass, we may compute
each of these in parallel:

Y
________]

________[

ŷÈ2Í = fdecoder
!
zı, (ỹÈ1Í)

"

ŷÈ3Í = fdecoder
!
zı, (ỹÈ1Í, ỹÈ2Í)

"

ŷÈ4Í = fdecoder
!
zı, (ỹÈ1Í, ỹÈ2Í, ỹÈ3Í)

"

...
ŷÈT Í = fdecoder

!
zı, (ỹÈ1Í, ỹÈ2Í, . . . , ỹÈT ≠1Í)

"
.

Note that while transformers were introduced for machine translation and are currently
the power house of large language models for generative text modeling, adaptations of
transformers have also been successful for other non-language tasks, including image tasks. In
fact, transformer models compete with convolutional models, and in certain cases outperform
convolutional models on images, especially in the presence of huge training datasets.

293

i
i

i
i

i
i

i
i

7 Sequence Models - DRAFT

Notes and References
A useful applied introductory text about time-series sequence data analysis is [198] and a more
theoretical book is [64]. Yet, while these are texts about sequence models, the traditional statistical
and forecasting time-series focus is on cases where each x

ÈtÍ is a scalar or a low dimensional vector.
Neural network models, the topic of this chapter, are very di�erent, and for an early review of
recurrent neural networks and generalizations see chapter 10 of [142] and the many references
there-in, where key references are also listed below.

As the most common application of sequence models is textual data, let us mention early texts on
natural language processing (NLP). General early approaches to NLP are summarized in [280] and
[216] where the topic is tackled via rule-based approaches based on the statistics of grammar. A
much more modern summary of applications is [228] and a review of applications of neural networks
for NLP is in [138], yet this field is quickly advancing at the time of publishing of this current book.
See also chapter 7 of the book [4] for a comprehensive discussion of RNNs as well as their long short
term memory (LSTM) and gated recurrent units (GRU) generalizations.

Recurrent neural networks (RNN) are useful for broad applications such as DNA sequencing, see
for example [375], image captioning as in [188], time series prediction as in [22], sentiment analysis
as in [274], speech recognition as in [146], and many other applications. Possibly one of the first
constructions of recurrent neural networks (RNN) in their modern form appeared in [117] and is
sometimes referred to as an Elman network. Yet this was not the inception of ideas for recurrent
neural networks and earlier ideas appeared in several influential works over the previous decades.
See [367] for an historical account with notable earlier publications including [13] in 1972, and [185],
and [357] in the 1980’s.

The introduction of bidirectional RNN is in [369]. The introduction of long short term memory
(LSTM) models in the late 1990’s was in [184]. Gated recurrent units (GRUs) are much more
recent concepts and were introduced in [80] and [85] after the big spark of interest in deep learning
occurred. An empirical comparison of these various approaches is in [214]. A more contemporary
review of LSTM is in [438]. These days, for advanced NLP tasks LSTMs and GRUs are generally
outperformed by transformer models, yet in non-NLP applications we expect to see LSTMs remain
a useful tool for many years to come. Some recent example application papers include [220], [295],
[351], and [446], among many others.

Moving onto textual data, the idea of word embeddings is now standard in the world of NLP. The
key principle originates with the word2vec work in [288]. Word embedding was further developed
with GloVe in [327]. These days when considering dictionaries, lexicons, tokenizations, and word
embeddings, one may often use dedicated libraries such as for example those supplied (and con-
tributed to) with HuggingFace.16 An applied book in this domain is [403] and since the field is
moving quickly, many others are to appear as well.

The modern neural encoder-decoder approach was pioneered by [218] and then in the context of
machine translation, influential works are [81] and [392]. The idea of using attention in recent times,
first for handwriting recognition, was proposed in [145] and then the work in [20] extended the idea,
and applied it to machine translation as we illustrate in our Figure 7.10. A massive advance was with
the 2017 paper, “Attention is all you need”, [410], which introduced the transformer architecture,
the backbone of almost all of today’s leading large language models. Ideas of layer normalization
are from [19]. Further details of transformers can be found in [331], and a survey of variants of
transformers as well as non-NLP applications can be found in [262].

At the time of publishing of this book the hottest topics in the world of deep learning are large
language models and their multi-modal counterparts. A recent comprehensive survey is in [449],
and other surveys are [73] and [155]. We should note that as this particular field is moving very
rapidly at the time of publication of the book, there will surely be significant advances in the years
coming. Multimodal models are being developed and deployed as well, and these models have images
as input and output in addition to text; see [428] for a survey. Indeed beyond the initial task of
machine translation, transformers have also been applied to images with incredible success. A first
landmark paper on this avenue is [107]. See also the survey papers [227] and [269].

16https://huggingface.co.

294

https://huggingface.co

i
i

i
i

i
i

i
i

7.5 Transformers

While this list is certainly non-exhaustive, we also mention some of the key large language model
architectures that emerged following the “Attention is all you need” paper [410]. Some of these are
BERT [103], Roberta [268], XLNET [433], GPT-2[340] GPT-3 [66]. Other notable LLMs are GLaM
[110], Gopher [341], Chinchilla [341], Megatron-Turing NLG [382], and LaMDa [400]. The topic of
training and using these models is beyond our scope.

295

	Preface - DRAFT
	Introduction - DRAFT
	The Age of Deep Learning
	A Taste of Tasks and Architectures
	Key Ingredients of Deep Learning
	DATA, Data, data!
	Deep Learning as a Mathematical Engineering Discipline
	Notation and Mathematical Background
	Notes and References

	Principles of Machine Learning - DRAFT
	Key Activities of Machine Learning
	Supervised Learning
	Linear Models at Our Core
	Iterative Optimization Based Learning
	Generalization, Regularization, and Validation
	A Taste of Unsupervised Learning
	Notes and References

	Simple Neural Networks - DRAFT
	Logistic Regression in Statistics
	Logistic Regression as a Shallow Neural Network
	Multi-class Problems with Softmax
	Beyond Linear Decision Boundaries
	Shallow Autoencoders
	Notes and References

	Optimization Algorithms - DRAFT
	Formulation of Optimization
	Optimization in the Context of Deep Learning
	Adaptive Optimization with ADAM
	Automatic Differentiation
	Additional Techniques for First-Order Methods
	Concepts of Second-Order Methods
	Notes and References

	Feedforward Deep Networks - DRAFT
	The General Fully Connected Architecture
	The Expressive Power of Neural Networks
	Activation Function Alternatives
	The Backpropagation Algorithm
	Weight Initialization
	Batch Normalization
	Mitigating Overfitting with Dropout and Regularization
	Notes and References

	Convolutional Neural Networks - DRAFT
	Overview of Convolutional Neural Networks
	The Convolution Operation
	Building a Convolutional Layer
	Building a Convolutional Neural Network
	Inception, ResNets, and Other Landmark Architectures
	Beyond Classification
	Notes and References

	Sequence Models - DRAFT
	Overview of Models and Activities for Sequence Data
	Basic Recurrent Neural Networks
	Generalizations and Modifications to RNNs
	Encoders Decoders and the Attention Mechanism
	Transformers
	Notes and References

	Specialized Architectures and Paradigms - DRAFT
	Generative Modelling Principles
	Diffusion Models
	Generative Adversarial Networks
	Reinforcement Learning
	Graph Neural Networks
	Notes and References

	Epilogue - DRAFT
	Some Multivariable Calculus - DRAFT
	Vectors and Functions in Rn
	Derivatives
	The Multivariable Chain Rule
	Taylor's Theorem

	Cross Entropy and Other Expectations with Logarithms - DRAFT
	Divergences and Entropies
	Computations for Multivariate Normal Distributions

	Bibliography
	Index

