The Mathematical Engineering of Deep Learning HW2: Due Feb 2, 2021

This HW covers units 2, 3, 4, and 5.

The grade for this homework will be based on the best 3 out of 5 questions. We recommend
that you attempt all 5 questions, however only the best 3 will be used, each with a weight of
33.33%.

Question 1: In this question you will implement the training of a two layer network from first
principles (without using a library such as Keras). Your network should classify 784 dimensional
vectors into one of ten classes. Hence it should work for datasets such as MNIST which are based
on 28 x 28 images and have 10 label types.

For the network architecture, assume there are 100 neurons in the first hidden layer and 10 neu-
rons in the second layer (which is also the output layer). Assume a sigmoid activation function
for the first layer, and 10 neurons in the second layer (which is the output layer) operated on
with a softmax. Assume cross entropy loss for categorical data. Use mini-batches of size 20, and
train using simple gradient descent with a learning rate n = 0.005.

Implement the code for this network and use your code on the MNIST dataset where for training
you should use the first 10,000 images of the training set and for validation you should use the
5,000 images that follow. Do not shuffle the dataset.

(a) Train the network for a variable number of epochs until you believe convergence is obtained.
Plot the loss, and accuracy both for the training set and the validation set.

(b) Determine the accuracy of your model on the test set (10,000 images) and present the con-
fusion matrix.

Reminder: MNIST comes with 60,000 images that are ‘training’ (and you will use the first
15,000 of these for training and validation). It also comes with an additional 10,000 images
that are ‘test’ and these are the test set you use for (b).

10f

The Mathematical Engineering of Deep Learning HW2: Due Feb 2, 2021

Question 2: Our goal is to implement the ADAM and RMSProp optimization algorithms and
compare their performances for the following Branin function,

First,

51 5 5 2 1
f(0)=1{02— —07+—-01—6) +10(1— — |cos(b1) + 10.
dm ™ 8w

consider the ADAM algorithm with the following updates:

v — 5 v 4 (1= 4,)g™®), (biased momentum)

st = 4 sF) 4 (1 —s) (g(k) ® g(k)> , (biased squared gradient)

ey VD _
v = —, (unbiased momentum)
1- Yo
S(k+1) st : :
s =1 v (unbiased squared gradient)
S

v (k+1)

okt — k) _ o~
et VD

(next iterate),

where ¢g®) = V£(#*)) and ® denotes the element-wise multiplication of two vectors. Note also
that division and square root operations between and on vectors are element-wise.

Also, consider the RMSProp algorithm with the following updates:

(a)
(b)

sk = ~) 4 (1) <g<k> ® g<k>) ,
gk

ITRCan)

Is RMSProp a special case of ADAM? Explain.

pk+1) — g(k)

Using Python, R, or Julia, implement the ADAM algorithm from first principles. Use
parameters o = 0.001, v, = 0.9, v, = 0.999, and € = 1078, Take the total number of
iterations N = 2 x 10* and initialize v(!) = 0 and s") = 0.

Report 0V) |V (0|, and f(OWN) for 6 = [5,20].

Now implement the RMSProp algorithm with parameters o = 0.001, vs = 0.9, and
¢ = 1078, Take the total number of iterations N = 2 x 10* and initialize s") = 0.

Report 8V) |V £(0M)|, and £ for 61 = [5,20].

To understand the sensitivity of the two algorithms to the learning rate parameter «,
repeat tasks (b) and (c) by taking the values of « to be 4,2,1, and 0.1. What are your
observations?

20f

The Mathematical Engineering of Deep Learning HW2: Due Feb 2, 2021

Question 3: Consider the FASHION-MNIST dataset and use a framework (e.g. Keras etc...)
to carry out a short empirical evaluation of the effectiveness of batch normalization for the
10-class classification task. For this construct a fully-connected neural network with 3 hidden
layers. Set the number of neurons in hidden layers 1, 2, and 3, to be 400, 200, and 100 respec-
tively. In each of these layers use the Relu activation function. Then layer 4 is the output layer
with 10 neurons and softmax activation. Use the cross entropy loss, the ADAM optimizer with a
learning rate of 0.01 (other ADAM parameters as defaults), and train with mini-batches of size
200. Do not use dropout or a regularization term. Use random standard normal initilization for
the weights and initilize the biases at 0.

Now refer to the architecture above as A and consider an additional architecture which we can
refer to as B. The B architecture is just like A, but also has batch normalisation at the output
of each of the hidden layers. That is, in B, there is batch normalisation over the 400, 200, and
100 neurones in the hidden layers. Your goal would be to compare architectures A and B.

Split the training data (60, 000 images) into a small training set of only 12, 000 images and a large
validation set of size 48,000 (this is 80% of the data used for validation). Note that this is not
a realistic split for practical situations, but in this exercise it may aid in speeding up convergence.

(a) Now train architectures A and B, 10 times each, where in teach training run you use 100
epochs. The training runs have different initialisations so they vary. This experiment may re-
quire up to several hours of computation time. Plot the loss and accuracy for both the training
and the validation set for each of the epochs on each of the training runs. Further, consider
an average of the runs, or any other comparison model, and present further plots to compare
the performance of A (no batch normalisation) v.s. B (batch normalisation). For example, an
average of the 10 runs over each epoch, or any other plots you see fit. Draw conclusions about
the effectiveness of batch normalisation based on this experiment.

(b) Based on the validation accuracy, choose the best predictor from the 10 runs of architecture
A, and the best predictor from the 10 runs of architecture B. Use early-stopping if you wish
(but this isn’t mandatory). Compare the accuracy of the ‘best A and ‘best B on the test set.

30f

The Mathematical Engineering of Deep Learning HW2: Due Feb 2, 2021

Question 4: In this question we deal with the CIFAR-10 dataset and use a neural network
framework of your choice (e.g. Keras) to compare several convolutional neural network architec-
tures for classification. Use the whole training dataset (50,000 images) where the first 40,000
should be taken for training and the last 10,000 for validation.

Consider several architectures however in all cases consider the input data as having the three
input channels (R, G, and B) of 32 x 32 images. In all cases use softmax for the output layer,
and in all cases use the cross entropy for categorical data loss. Further in all cases use the
ADAM optimiser with default parameters and a (default) learning rate of 0.01. If poor conver-
gence performance is observed, adjust the learning rate. In all cases use minibatches of size 100.
Further, for all activation functions use ReLu.

All architectures start with 3 convolutional layers, denoted Ci, Co, and Cs3. Further there are
two fully connected layers denoted Fjy, and Fjy, followed by the output softmax layer. We do
not use batch normalisation or dropout. In all convolutional layers we use a (default) stride
of 1. The convolutional layers are then parameterised by the size of the convolution (3 or 5),
the number of output channels (4, 6, or 8), the padding (0, 1, or 2). and the presence of 2 x 2
maxpooling at the output of the layer, or not.

Consider now the following architectures where the 4-tuple for each of C,Cs, and Cj specify
the size of the convolution, the number of output channels, the size of the padding, presence of
max-pooling, and the number of neurons of Fy and F5.

Architecture & ‘ Oy ‘ Cs Fy Fy
(Size, Channels, Padding, Pooling) # neurons | # neurons

1 (5,8,0,false) | (3,6,0,true) | (3,4,1,true) 120 100

2 (3,6,1,false) | (3,4,1,false) | (3,4,1,true) 80 150

3 (5,8,2,false) | (5,6,2,false) | (3,4,0,true) 120 100

4 (5,8,2,false) | (5,8,2,false) | (3,6,1,true) 80 150

(a) Train models using all of these four architectures and in each case plot the loss and accuracy
both for the training set and the validation set. Train until “convergence is observed” based on
a criterion of your choice. Use early-stopping to choose the best training parameters for each
model, based on the validation accuracy. As with the previous question keep in mind that the
computation time of training may be significant.

(b) Now create an ensemble predictor which operates by averaging the output of the four trained

models. That is if the output of model i for image x is the probability vector p;(z) € R1?, then
the ensemble predictor for an image z, is f(z) with,

4
f(f’«") = argmaxy—i 10 [i sz(x)])
J ¢

where [u]y is the £’th element of the vector w.

malI‘IX.

40f

The Mathematical Engineering of Deep Learning HW2: Due Feb 2, 2021

Question 5: This question does not require any computation/programming. It rather deals
with the design of a neural network architecture that can carry out both object recognition
and localization. Assume an input image of size 60 x 60 which for simplicity we assume is
monochrome (e.g. black and white). Say we now wish to consider multiple sub-images, each of
size 20 x 20 and for each such sub-image we wish to carry out classification for one of 5 possible
labels. We then wish to determine in which sub-image the classification is most probable and
the classification value. For example, if the whole image is indexed via (1:60,1 :60) then the
sub-image can be (1:20, 1:20) (meaning the top-left corner sub-image), or (41:60, 41:60) (meaning
the bottom-right corner), or any other sub-image of size 20 x 20 such as (19:38,11:30) etc..

As an aid, assume we have a trained convolutional neural network, denoted M which is designed
to work on monochrome input images of size 20 x 20. The network M outputs a probability
vector of length 5 which indicates likelihood of the 5 labels.

A simple recognition and localization model, Rq then uses M by applying M repeatedly on all
possible sub-images with a stride of 2. This means applying it on the (1:20,1:20) sub-image, the
(3:22,1:20) sub-image, the (5:24,1:20) sub-image, and moving all the way to the (41:60, 41:60)
sub-image. This is a total of 21 x 21 = 441 applications of M on sub-images which results
in 441 output probability vectors. The recognition and localization model R; then picks the
highest probability from all these vectors (breaking ties arbitrarily). If this highest probability
is p;; where 4 is the index of the sub-image (i = 1,...,441) and j is the index of the label
(j = 1,...,5), the model then concludes that in the input image, one can find label j in the
sub-image indexed by 1.

It turns out, that R; can be improved to a model Ry which uses a single (bigger) convolutional
network only once. Denote this network via Rg The network Rg operates on the whole 60 x 60
input image and produces a 21 x 21 x 5 tensor, say P, which contains the same probability
vectors which we would observe if applying M to each of the 21 x 21 sub-images separately (as
is done with R1). In the output tensor P, the entry P;, ;, ; indicates the probability of having
label j in the image associated with the sub image defined by the index (i1, i2). Specifically, the
5-vector P, ;,. is a probability vector associated with the output of M of the sub-image.

The recognition and localization model Ry then applies Rs to the 60 x 60 input images and
concludes both the location and label based on the maximal entry in P.

The construction of a model like R5 and the neural network 7@2 based on a neural network like
M is described well in this video by Andrew Ng. However the notation that we use in this
question is not used in the video and the dimensions are different. Watch the video.

Now assume that M has a given architecture, and describe in detail how to create the neural
network Ry based on M. Describe the dimensions of Ro and specify how to use the (trained)
parameters of M to construct Rs.

Assume the following as the architecture of M.
Layer 1: 5 x 5 convolutional, padding = 2, stride = 1, 8 output channels, no pooling.
Layer 2: 3 x 3 convolutional, padding = 1, stride = 1, 16 output channels, 2 x 2 pooling.
Layer 3: 3 x 3 convolutional, padding = 0, stride = 1, 12 output channels, 2 x 2 pooling.
Layer 4: Fully connected layer with 50 neurons.
Layer 5: Fully connected layer with 100 neurons.

Output layer: 5 neurons with softmax.

50f

https://www.youtube.com/watch?v=XdsmlBGOK-k

