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Outline of Lecture

• Summary Lecture 1 (10 minutes)

• Logistic regression (20 minutes)

• Statistical view
• Machine Learning framework

• Softmax regression (20 minutes)

• Statistical view
• Machine Learning framework
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Reminder of Machine Learning

DEFINITION:

• Samuel Muller (1959): https://en.wikipedia.org/wiki/Arthur_Samuel

• "Machine Learning is the field of study that gives the computer the
ability to learn without being explicitly programmed."

• Tom Mitchell (1998): https://en.wikipedia.org/wiki/Tom_M._Mitchell

• "A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E."
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Supervised Learning: Big Picture

Process of Supervised Learning
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Supervised Learning

Aim
To estimate the function f (the model) in the relationship

Y = f (X ) + “error”,

using observed input/output data

data = {(x1, y1), (x2, y2), . . . , (xm, ym)}.

why:

• Prediction: Using the learned model f̂ ≈ f we can predict

Ŷ = f̂ (X )

the value of a new unseen input X (“test input”).

• Inference: The model f̂ can help us to understand the relationships
between input and output variables. Useful for decision making but
also to advance our knowledge and to construct better models 5



Supervised Learning

• Regression: when the output Y is quantitative:

• Marketing: Y= housing price

• Climate models: Y = increase in global temperature

• Classification: when the output Y is qualitative

• Diagnosis cancer (Y ∈ {"Malignant", "Benign"})

• Spam filters (Y ∈ {"spam", "good email"})

• Image classification: MNIST (Y ∈ {0, 1, . . . , 9})
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Regression: linear case

Y = β0 +
d∑

j=1

Xjβj + ε

= βT X + ε,

where β is the parameters composed by the “weights” βj

and the offset (“bias”/“intercept”) term β0,

β =
(
β0 β1 β2 · · · βd

)T
,

X =
(
1 X1 X2 · · · Xd

)T
.

How to estimate this model?

• Loss function

• Likelihood approach
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Linear case: Loss function

Training Step: we want to make f̂ (X ) close to Y .

• Closeness between f̂ (X ) and Y is evaluated using loss function

• Linear case: Squared loss

L (Y , f̂ (X )) = (Y − f̂ (X ))2 (⇒ MSE)

• Testing Step: It is more common to use same loss: function

• when training the model (minimizing loss of training data)

• when testing the model (evaluating loss at test inputs)
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Minimize the Cost function

Cost function for the data = {(x1, y1), (x2, y2), . . . , (xm, ym)}. (xj ∈ <
d)

J(β) =
1
m

m∑
i=1

L (yi − f̂ (xi))

=
1
m

m∑
i=1

(Yi − β
T Xi)2

=
1
m

(Y − Xβ)T (Y − Xβ)

TO DO NOW: derive an estimate of β ∈ <d
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Solution
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Likelihood approach

Reminder Likelihood for an i.i.d. sample y = (y1, . . . , yn)

General case: Yi ∼ f (y; θ)

L (θ; y) =
n∏

i=1

f (yi ; θ) (since Yi are independent)

Example: Yi ∼ N(µ, σ2) (θ = (µ, σ2))

L (µ, σ2, y) =
n∏

i=1

1
√

2πσ2
exp

(
−

(yi − µ)2

2σ2

)
=

1
(2πσ2)n/2

exp
(
−

∑n
i=1(yi − µ)2

2σ2

)
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Likelihood approach

Next step: find θ = (µ, σ2) which maximises the likelihood

↪→ Differentiate the log-likelihood with respect to the parameter, and set to
0 for the maximum:

∂logL (θ; y)
∂θ

= 0

Linear model:

Yi = βT Xi + εi , i = 1, . . . ,m

where εi
iid
∼ N(0, σ2)

TO DO NOW: derive the maximum likelihood estimate of β ∈ <d
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Solution
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Linear model is a shallow NN ?

Neural Network
A neural network (NN) is a nonlinear function Y = f (X ; θ) + ε from an
input X to an output Y parameterized by parameters θ.

Y = σ(βT X ) + ε,

or equivalently

= Z + ε, with Z = σ(βT X )

• linear model: activation function σ(x) is the identity function σ(x) = x.
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Extend the linear model

NN introduces nonlinear transformations of the predictor βT X ,
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Neural Network: construction
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Neural Network: construction

A neural network can be viewed as sequential construction of several
linear regression models

a1 = σ(XTβ
(1)
1 )

=
ŷ = β(2)

1 a1
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Neural Network: construction

A neural network can be viewed as sequential construction of several
linear regression models

a1 = σ(XTβ
(1)
1 )

a2 = σ(XTβ
(1)
2 )

ŷ = β(2)
1 a1 + β(2)

2 a2
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Neural Network: construction

A neural network can be viewed as sequential construction of several
linear regression models

a1 = σ(XTβ
(1)
1 )

a2 = σ(XTβ
(1)
2 )

...

aM σ(XTβ
(1)
2 )

ŷ =
M∑

m=1

β
(2)
m am

19



Example using R

Demo
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Regression: Binary outcome

Consider binary classification problems: y ∈ {0, 1}

• Example 1: predicting hypercholesterolemia (y = 1) given weight x

What’s wrong with the linear model (black line)
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With two features:
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Logistic Regression

Consider the data from Breast Cancer Wisconsin (Diagnostic) (WBCD)
dataset

• Aim: discriminate benign (Y = 0) from malignant (Y = 1) lumps of a
breast mass

• 30 (=d) characteristics of individual cells of breast cancer

23

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29


Linear versus non-linear
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Logistic Regression

• Data: 30 features ..

diagnosis radius_mean texture_mean perimeter_mean area_mean

1 M 17.99 10.38 122.80 1001.0

2 M 20.57 17.77 132.90 1326.0

3 M 19.69 21.25 130.00 1203.0

4 M 11.42 20.38 77.58 386.1

5 M 20.29 14.34 135.10 1297.0

6 M 12.45 15.70 82.57 477.1

[1] 569 32
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Visualisation
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Density plot
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Simple logistic model

Call:

glm(formula = diagnosis_0_1 ~ area_mean, family = "binomial",

data = train)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.7323 -0.4762 -0.1997 0.1159 2.6929

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.789754 0.742988 -10.484 <2e-16 ***

area_mean 0.011590 0.001191 9.735 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 607.28 on 455 degrees of freedom

Residual deviance: 267.53 on 454 degrees of freedom

AIC: 271.53

Number of Fisher Scoring iterations: 7
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Probability of Tumor Being Cancerous
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Result for a 0.5 cut-off

Reference

Prediction 0 1

0 263 37

1 18 138

Accuracy

0.879386

We made 401 correct predictions,

55 incorrect predictions,

thus giving us an accuracy rating of: 87.9%

Why only results on 456 samples and not on 569?
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Overfit

How our model will generalize to new samples that we didn’t use to train

Solution to quantify the true generalization error is to split the data:

• First version: holdout cross-validation

• Second version: K-fold cross-validation
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Two predictors
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Classification with the logistic model
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Linear decision bundary

It looks a linear decision boundary while we use a non linear function as
the logistic model!!!

• Need further explanation of the logistic model

• sigmoid function σ(·), also known as the logistic function, is defined
as follows:

∀z ∈ R, σ(z) =
1

1 + e−z ∈]0, 1[
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Definition of logistic model

• A probabilistic model to predict the probability that the outcome
variable y is equal to 1.

• y |x; θ ∼ Bernoulli(φ).

• Logistic regression is defined by applying the sigmoid function to
the linear predictor θT x:

φ = hθ(x) = p(y = 1|x; θ) =
1

1 + exp(−θT x)
= σ(θT x)

The logistic regression is also presented:

Logit[hθ(x)] = logit [p(y = 1|x; θ)] = θT x

where Logit(p) = log
(

p
1−p

)
.
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Likelihood of the logistic model

The maximum likelihood estimation procedure:

p(y |x; θ) =

hθ(x) if y = 1, and

1 − hθ(x) otherwise.

which could be written as
p(y |x; θ) = hθ(x)y (1 − hθ(x))1−y ,

Likelihood for m training:samples denoted by
{
(x (1), y (1)), . . . , (x (m), y (m))

}
L (θ) =

m∏
i=1

p(y (i)|x (i); θ)

=
m∏
i=1

hθ(x (i))y (1 − hθ(x (i)))1−y

`(θ) = log L (θ) =
m∑

i=1

[
y (i)log hθ(x (i)) + (1 − y (i))log (1 − hθ(x (i)))

]
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Shallow Neural Network
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Shallow Neural Network
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Cross-entropy Loss

• For binary class problem, Cross-entropy loss is the most popular
(due to property of convexity)

• The cross-entropy is defined for one sample (x, y):

LCE (y, ŷ) =

 −loĝy if y = 1
−log(1 − ŷ) if y = 0

= −yloĝy − (1 − y)log(1 − ŷ)
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Cost function:

J(w, b) =
1
m

m∑
i=1

L(̂y (i), y (i))

Connection with the log-likelihood

J(w, b) =
1
m

m∑
i=1

L(̂y (i), y (i))

Further, it is easy to see the connection with the log-likelihood function of
the logistic model:

J(w, b) =
1
m

m∑
i=1

L(̂y (i), y (i))

= −
1
m

m∑
i=1

[
y (i)loga(i)) + (1 − y (i))log(1 − a(i))

]
= −

1
m

m∑
i=1

[
y (i)loghθ(x (i)) + (1 − y (i))log(1 − hθ(x (i)))

]
≡ −

1
m
`(θ) 40



How to maximize?

• Next lecture . . . .
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Main Metrics and AUC

• Main Metrics:
• Precision
• Recall
• F1

• AUC. The area under the receiving operating curve, also noted AUC
or AUROC
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Multiclass Classification

Multiclass classification: predicting a discrete (> 2)-valued target

• predict the value of a handwritten digit

• classify e-mails as spam, travel, work, personal
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Multiclass Classification

• Targets form a discrete set {1, . . . ,K }

• It’s often more convenient to represent them as one-hot vectors, or
a one-of-K encoding:

y∗ = (0, . . . , 0, 1, 0, . . . , 0)T︸                      ︷︷                      ︸
entry k is 1

∈ <K

• softmax regression, also called a multiclass logistic regression is
used when there are more than 2 outcome classes (k = 1, . . . ,K ).
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Probabilistic Model

multinomial regression model
A GLM model where the distribution of the outcome y is a
Multinomial(1, π) where π = (φ1, . . . , φK ) is a vector with probabilities of
success for each category. This Multinomial(1, π) is more precisely called
categorical distribution.

• The multinomial regression model is parameterize by K − 1
parameters, φ1, . . . , φK , where φi = p(y = i; φ), and
φK = p(y = K ; φ) = 1 −

∑K−1
i=1 φi .

• We set θK = 0, which makes the Bernoulli parameter φi of each class
i be such that

φi =
exp(θT

i x)
K∑

j=1

exp(θT
j x)

, where θ1, . . . , θK−1 ∈ <
d+1

• Output of the model: estimated probability p(y = i|x; θ), for every
value of i = 1, . . . ,K .
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Likelihood of the softmax model

The maximum likelihood estimation procedure consists to maximizing the
log-likelihood:

`(θ) =
n∑

i=1

logp(y (i)|x (i); θ)

=
m∑
i=1

log
K∏

l=1

 eθ
T
l x (i)∑K

j=1 eθ
T
j x (i)


1
{y(i)=l}

46



Neural network

ŷ = argmax ai
i∈{1,...,K }
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Loss function: cross-entropy for categorical variable

• Let consider first one training sample (x, y).

• The cross entropy loss for categorical response variable, also called
Softmax Loss is defined as:

CE = −

K∑
i=1

ỹi ln p(y = i)

= −

K∑
i=1

ỹi ln ai

= −

K∑
i=1

ỹi ln


exp(zi)

K∑
j=1

exp(zj)


where ỹi = 1{y=i} is a binary variable indicating if y is in the class i.
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This expression can be rewritten as

CE = − ln
K∏

i=1


exp(zi)

K∑
j=1

exp(zj)



1{y=i}

Then, the cost function for the m training samples is defined as

J(w, b) = −
1
m

m∑
i=1

ln
K∏

k=1


exp(z(i)

k )
K∑

j=1

exp(z(i)
j )



1
{y(i)=k }

≡ −
1
m
`(θ)
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Take Home Message

• Likelihood

• Logistic model

• Sigmoid

• ReLu

• Squared loss

• Cross entropy loss

• Metrics

• Softmax
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Home work: handwritten digits

We want to classify images (28 × 28 = 784 pixels) such as these

into 10 classes (0 to 9)

Work to do

• One versus All using 10 logistic models

• Softmax regression
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