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Outline of Lecture

e Summary Lecture 1 (10 minutes)

e Logistic regression (20 minutes)

o Statistical view
e Machine Learning framework

e Softmax regression (20 minutes)

o Statistical view
e Machine Learning framework



Reminder of Machine Learning

DEFINITION:
e Samuel Muller (1959): https://en.wikipedia.org/wiki/Arthur_Samuel
e "Machine Learning is the field of study that gives the computer the
ability to learn without being explicitly programmed."
e Tom Mitchell (1998): https://en.wikipedia.org/wiki/Tom_M._Mitchell

e "A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E."


https://en.wikipedia.org/wiki/Arthur_Samuel
https://en.wikipedia.org/wiki/Tom_M._Mitchell

Supervised Learning: Big Picture

Process of Supervised Learning

Training Set

Learning Algorithm

\ J
= Y
New data . Result
> Hypothesis/model > (Prediction/Classification)
x J




Supervised Learning

Aim
To estimate the function f (the model) in the relationship

\ Y = f(X) + “error”,

using observed input/output data

data = {(x1, y1), (X2, ¥2), - --» (Xm» Ym)}-

why:

e Prediction: Using the learned model f ~ f we can predict

Y = f(X)
the value of a new unseen input X (“test input”).

e Inference: The model f can help us to understand the relationships
between input and output variables. Useful for decision making but
also to advance our knowledge and to construct better models 5



Supervised Learning

e Regression: when the output Y is quantitative:

e Marketing: Y= housing price

e Climate models: Y = increase in global temperature
e Classification: when the output Y is qualitative

e Diagnosis cancer (Y € {"Malignant", "Benign"})

e Spamfilters (Y € {"spam", "good email"})

e |Image classification: MNIST (Y € {0, 1,...,9})



Regression: linear case
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where S is the parameters composed by the “weights” g;
and the offset (“bias”/“intercept”) term Sy,

.
ﬂ=(o B B2 - ﬁd),
X=(1 X % - X).

How to estimate this model?
e Loss function

e Likelihood approach



Linear case: Loss function

Training Step: we want to make f(X) close to Y.

e Closeness between f(X) and Y is evaluated using loss function

e Linear case: Squared loss

LY, T(X)) = (Y =F(X))? (= MSE)

e Testing Step: It is more common to use same loss: function
e when training the model (minimizing loss of training data)

e when testing the model (evaluating loss at test inputs)



Minimize the Cost function

Cost function for the data = {(x1, y1), (X2, ¥2)s - --» (Xms Ym)}- (X € RY)

L(yi - f(x))
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TO DO NOW: derive an estimate of 8 € ‘R






Likelihood approach

Reminder Likelihood for an i.i.d. sample y = (y1,...,¥n)

General case: Y; ~ f(y;0)
n
L(;y) = 1—1 f(y;;0) (since Y; are independent)
i=1

Example: Y; ~ N(u,o®) (6 = (u, o))

L(u, 2, y)

l_[ ( (yi — p)® )
V2ro? 20®

o - Zi2)
@ro2)z &P 202



Likelihood approach

Next step: find 6 = (4, 0®) which maximises the likelihood

— Differentiate the log-likelihood with respect to the parameter, and set to
0 for the maximum:

dlogL (6;y)
=27 -0
00
Linear model:
Y,'=,8TX,'+8,', i=1,....,m

where & 2 N(0, o2)

TO DO NOW: derive the maximum likelihood estimate of 8 € R






Linear model is a shallow NN ?

Neural Network
A neural network (NN) is a nonlinear function Y = f(X;6) + € from an
input X to an output Y parameterized by parameters 6.

1 Bo
X1

Xd. Bd

<
I

oBTX) + ¢,
or equivalently
Z+e, with Z=0@B"X)

e linear model: activation function o (x) is the identity function o (x) = x.



Extend the linear model

NN introduces nonlinear transformations of the predictor 87 X,

Sigmoid Relu
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Sigmoid: o(X) = 175 RelLu: o(x) = max(0, x)



Neural Network: construction



Neural Network: construction

A neural network can be viewed as sequential construction of several
linear regression models

Inputs Hidden units Output
1
X, >k@\
Xd

a = oX'")



Neural Network: construction

A neural network can be viewed as sequential construction of several
linear regression models

Inputs Hidden units Output
1

X1
5 / y
Xd

a = oX'")

;
a = oX'8)) ) i
y=pPar+pY a



Neural Network: construction

A neural network can be viewed as sequential construction of several
linear regression models

Inputs Hidden units Output

7= Z,Bg)am

m=1

aM 0_(xT (1))



Example using R

Demo

20



Regression: Binary outcome

Consider binary classification problems: y € {0, 1}

e Example 1: predicting hypercholesterolemia (y = 1) given weight x

o

0.8
I

0.6

Probability hypercholestorelemia
0.4

02

weight

What's wrong with the linear model (black line)
21



With two features:

Linear regression

Logistic regression

22



Logistic Regression

Consider the data from Breast Cancer Wisconsin (Diagnostic) (WBCD)
dataset

e Aim: discriminate benign (Y = 0) from malignant (Y = 1) lumps of a
breast mass

e 30 (=d) characteristics of individual cells of breast cancer

L‘

Figure 1: Amagnified image of a malignant breast FNA. A curve-fitting algorithm was used to outline the cell
nuclei. (Figure from Mangasarian OL., Street WN., Wolberg. WH, Breast Cancer Diagnosis and Prognosis via
Linear Programming. Mathemnatical Programming Technical Report 94-10. 1994 Dec)

23


https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

Linear versus non-linear

he(x) = 8'x a(2)
ves 1| o000 o] 1 —
Malignant? 05 ]'0-5
,’/‘.
NO 09909 . —_— ! .
g T . Zz
Jumor size ]
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Logistic Regression

e Data: 30 features ..

diagnosis radius_mean texture_mean perimeter_mean area_mean

1 M 17.99 10.38 122.80 1001.0
2 M 20.57 17.77 132.90 1326.0
3 M 19.69 21.25 130.00 1203.0
4 M 11.42 20.38 77.58 386.1
5 M 20.29 14.34 135.10 1297.0
6 M 12.45 15.70 82.57 477.1

[1] 569 32

25



Visualisation

Cancerous Tumors Have a Much Higher Cell Nuclei Area Mean
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Density plot

Cancerous Tumors Have a Much Higher Cell Nuclei Area Mean
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Simple logistic model

Call:
glm(formula = diagnosis_0_1 ~ area_mean, family = "binomial",
data = train)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.7323 -0.4762 -0.1997 0.1159 2.6929

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.789754  0.742988 -10.484 <2e-16 ***
area_mean 0.011590 0.001191 9.735 <2e-16 ***

Signif. codes: 0 '¥***' 9.001 '**' 0.01 '*' .05 '."' 0.1 " ' 1

(Dispersion parameter for binomial family taken to be 1) 28



Probability of Tumor Being Cancerous

Logistic Regression Curve - Predicting Breast Cancer
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Result for a 0.5 cut-off

Reference
Prediction 0 1
0 263 37
1 18 138

Accuracy
0.879386

We made 401 correct predictions,
55 incorrect predictions,
thus giving us an accuracy rating of: 87.9%

Why only results on 456 samples and not on 5697

30



How our model will generalize to new samples that we didn’t use to train
Solution to quantify the true generalization error is to split the data:

e First version: holdout cross-validation

Holdout / validation

Training set (e.g. 70%) set (e.g. 30%)

Li
All data

e Second version: K-fold cross-validation

Fold 1 Fold 2 Fold k&

T
All data 31
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Classification with the logistic model
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Linear decision bundary

It looks a linear decision boundary while we use a non linear function as
the logistic model!!!

e Need further explanation of the logistic model

e sigmoid function o(-), also known as the logistic function, is defined
as follows:

1
VYzeR, o(2)= T7o2 €]0, 1]

o(2)
00 02 04 06 08 10

34



Definition of logistic model

e A probabilistic model to predict the probability that the outcome
variable y is equal to 1.

e y|x;6 ~ Bernoulli(g).
e Logistic regression is defined by applying the sigmoid function to

the linear predictor 67 x:

1

- —5(O7
Trexplarx) 0%

¢ = hg(x) = p(y = 1|x;0) =

The logistic regression is also presented:

Logit{hy(x)] = logit[p(y = 11x;6)] = 7 x

where Logit(p) = log (%).

35



Likelihood of the logistic model

The maximum likelihood estimation procedure:

hy(x) if y=1, and
1 — hy(x) otherwise.

which could be written as
P(ylx; 6) = hg(x)” (1 = hy(x))" ™,

Likelihood for m training:samples denoted by {(x“), y, o (xtm), y(’"))}

Lo = []p0x%0)

i=1

Pox ) (1 = b))

—s

I
-

I

(6) =log L(6) = ) [y"og hy(x) + (1 = yM)log (1 — hy(x?))|

i=1
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Shallow Neural Network

Activation Functions
(]

119\’
0, z— / y
xg/

O g@)=0(2)=

9 =9g(60+X70)

* Example: sigmoid function

1
1+e-2

Xm

Inputs  Weights Sum  Non-Linearity Output

MIT: Alexander Amini, 2018 introtodeeplearning.com

37



Shallow Neural Network

X1
T — 35
X3 wTx + b|o(2) a=y
Z a
X3
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Cross-entropy Loss

e For binary class problem, Cross-entropy loss is the most popular
(due to property of convexity)

e The cross-entropy is defined for one sample (x, y):

Lee(y.y)

~logy ify =1
—log(1-7y) ify=0
—ylogy — (1 - y)log(1 =)

39



Cost function:

Jw,b) = — 3" £, y)

Connection with the log-likelihood

J(w, b) ——ZLU

Further, it is easy to see the connection with the log-likelihood function of
the logistic model:

1 v ;

— ) ()

mZaVJ)

m
Z loga y(f))log(1 - a(i))]

J(w, b)

N*

[y"toghy(x%) + (1 ~ y)log(1 = hy(x"))]

I
-
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How to maximize?

o Next lecture ....

41



Main Metrics and AUC

e Main Metrics:
e Precision
e Recall
o
e AUC. The area under the receiving operating curve, also noted AUC
or AUROC

ROC \ Actual —
TPR — /\

AUC /

FPR Predicted — Predicted +

42



Multiclass Classification

Multiclass classification: predicting a discrete (> 2)-valued target
e predict the value of a handwritten digit

e classify e-mails as spam, travel, work, personal

43



Multiclass Classification

e Targets form a discrete set {1, ..., K}

e It's often more convenient to represent them as one-hot vectors, or
a one-of-K encoding:

y*=(0,...,0,1,0,...,0) e RK

entry kis 1

e softmax regression, also called a multiclass logistic regression is
used when there are more than 2 outcome classes (k = 1,..., K).

44



Probabilistic Model

multinomial regression model

A GLM model where the distribution of the outcome y is a

Multinomial(1, r) where & = (¢4, . . ., ¢k) is a vector with probabilities of
success for each category. This Multinomial(1, zr) is more precisely called
categorical distribution.

e The multinomial regression model is parameterize by K — 1
parameters, ¢1, ..., ¢k, where ¢; = p(y = i; ¢), and
$k=ply = K;¢) =1 - 3" ¢,

e We set 6k = 0, which makes the Bernoulli parameter ¢; of each class
i be such that

exp(67 x
b = Kp(—’), where  0y,...,0_y € R
Z exp(6] x)
j=1
e Output of the model: estimated probability p(y = i|x; 6), for every
valueofi=1,...,K.

45



Likelihood of the softmax model

The maximum likelihood estimation procedure consists to maximizing the
log-likelihood:

=
)
I
—
5
i
3
K/\
>
S
2
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Neural network

Output

Y = argmax a;
ie,....K)

47



Loss function: cross-entropy for categorical variable

e Let consider first one training sample (x, y).

e The cross entropy loss for categorical response variable, also called
Softmax Loss is defined as:

CE

I
|
Nl
<
=1
E
<
I

_exp(z)

K
Z exp(z))
j=1

where y; = 1y, is a binary variable indicating if y is in the class i.

I
'D4x
Li!

0]
-
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This expression can be rewritten as

Tiy=i

exp(z;)

Inl—[ _exp(z)

= Zexp (z)
=

Then, the cost function for the m training samples is defined as

J(w, b)

I
|
3=
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5
=
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3
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i
|
|
=
=
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Take Home Message

e Likelihood

e Logistic model

e Sigmoid

e Relu

e Squared loss

e Cross entropy loss
e Metrics

e Softmax

50



Home work: handwritten digits

We want to classify images (28 x 28 = 784 pixels) such as these

S04/ q|#

into 10 classes (0 to 9)

Work to do
e One versus All using 10 logistic models

e Softmax regression

51



