
The Mathemmatical Engineering
of Deep Learning
Chapter 4 - Lecture 4

B. Liquet1,2 and S. Moka3 and Y. Nazarathy3

1 Macquarie University 2 LMAP, Université de Pau et des Pays de L’Adour’ 3 The University of Queensland

1

Outline of Lecture 1/3

• Review: shallow Neural Network

• Full Neural Network

• Matrix Representation

• Activation Function and Derivative

• Backpropagation on a simple example

2

Outline of Lecture 2/3

• Backpropagation on a DNN

• How to compute derivative?: Automatic differentiation

• Approximation Properties of Multilayer Perceptrons

• Weight initialization

3

Outline of Lecture 3/3

• Regularization

• Dropout

• Batch-Normalization

• About vanishing gradients

4

Review: The formal Neuron (1943) [1]

• Mapping from input x to output y

• Linear (affine) mapping: z = wT x + b (linear model)
• Non-linear activation function σ(·)→ ŷ = σ(z)

5

Formal Neuron: classical models

• Regression Task (y ∈ <).

• Identity function, σ(x) = x, apply on the linear predictor xT w
• Equivalent to the Linear model: E[Y |x] = xT w

• Binary Classification Task (y ∈ {0, 1}):

• Sigmoid function, σ(x) = 1
1+e−z , apply on the linear predictor xT w.

• Equivalent to the logistic model: P[Y = 1|x] = xT w
1+exp(xT w)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigmoid

x

σ(
x)

6

Formal Neuron: extension

• Multi-class Classification (y ∈ {1, . . . ,K })

• concatenation of K formal neurons
• activation function called “softmax”

7

Beyond Linear Classification

• Logistic and Softmax models produce linear boundaries

• Solution: add a layer

8

A short Demo

9

One hidden Layer Neural Network

z[1]
1 = w [1]

1

T
x + b [1]

1 a [1]
1 = σ(z[1]

1)

z[1]
2 = w [1]

2

T
x + b [1]

2 a [1]
2 = σ(z[1]

2)

z[1]
3 = w [1]

3

T
x + b [1]

3 a [1]
3 = σ(z[1]

3)

z[1]
4 = w [1]

4

T
x + b [1]

4 a [1]
4 = σ(z[1]

4)

• output layer is defined by:

z[2]
1 = w [2]

1

T
a [1] + b [2]

1 a [2]
1 = σ(z[2]

1)

10

Matrix Notation

• The superscript number [i] for denoting the layer number and the
subscript number j denotes the neuron number in a particular layer

• x is the input vector consisting of 3 features.
• w [i]

j is the weight vector associated with neuron j present in the layer
i

• b [i]
j is the bias scalar associated with neuron j present in the layer i.

• z[i]
j is the intermediate output associated with neuron j present in

the layer i.
• a [i]

j is the final output associated with neuron j present in the layer i.
• As an example σ(·) is the sigmoid activation function

11

Forward-propagation equations

z[1] = W[1]x + b [1]

a [1] = σ(z[1])

z[2] = W[2]a [1] + b [2]

ŷ = a [2] = σ(z[2])

where

W[1] =

− w [1]

1

T
−

− w [1]
2

T
−

− w [1]
3

T
−

− w [1]
4

T
−

b [1] =

b [1]

1

b [1]
2

b [1]
3

b [1]
4

 z[1] =

z[1]

1

z[1]
2

z[1]
3

z[1]
4

 a [1] =

a [1]

1

a [1]
2

a [1]
3

a [1]
4

12

Why non-linear Activation is important

Consider this neural network without activation functions:

z[1] = W [1]x + b [1]

ŷ = z[2] = W [2]z[1] + b [2]

Then, it follows

z[1] = W [1]T x + b [1]

ŷ = z[2] = W [2]W [1]x + W [2]b [1] + b [2]

ŷ = z[2] = Wnewx + bnew

• The output is then a linear combination of a new weight matrix, input
and a new bias.

• Identity activation function: NN will output linear output of the input.
• Composition of two linear functions is a linear function.
• Linear activation function is generally used for the output layer in

case of regression. 13

Deep Learning: N layers Neural Network

• The elementary bricks of deep learning are the neural networks, that
are combined to form the deep neural networks

• Deep learning architectures are based on deep cascade of layers.

• Several types of architectures:

• The multilayer perceptrons, that are the oldest and simplest ones
• The Convolutional Neural Networks (CNN), particularly adapted for

image processing
• The recurrent neural networks, used for sequential data such as text

or times series.

14

Multi-layer fully-connected; Multi-Layer Perceptron; Feed-forward
Neural Networks
• Multilayer network: Cascade of multiple layers, each of which is a

nonlinear transformation.

• A multilayer network consisting of fully connected layers is called a
multi-layer perceptron

• The units are connected together into a directed acyclic graph
which gives a feed-forward neural network

15

Multi-layer fully-connected neural networks

Forward pass equation

a [1] = g[1](W [1]x + b [1])

a [2] = g[2](W [2]a [1] + b [2])

. . . = . . .

a [r−1] = g[r−1](W [r−1]a [r−2] + b [r−1])

ŷ = a [r] = g[r](W [r]a [r−1] + b [r])

• r layers based on r weight matrices W [1], . . . ,W [r]

• r bias vectors b [1], . . . , b [r].
• r activation functions noted g[r] which might be different for each

layer r .
• The number of neurons in each layer could be also be not equal

(noted mr)

16

How do we count layers in a Deep Neural Network?

When counting layers in a neural network we count hidden layers as well
as the output layer, but we don’t count an input layer.

It is a ?? layer neural network with ?? hidden layers.

17

Vectorizing Across Multiple Training Examples

• Consider m training samples x [1], . . . , x [m]

• Thus m predictions x (i) −→ a [2](i) = ŷ i = 1, . . .m
• Define the matrices X, Z[1] and A[1]:

X =

| | . . . |

x (1) x (2) . . . x (m)

| | . . . |

 , Z[1] =

| | . . . |

z1 z[1](2) . . . z[1](m)

| | . . . |

A[1] =

| | . . . |

a 1 a [1](2) . . . a [1](m)

| | . . . |

A [1] =

1st unit of 1.tr .example . . . 1st unit of mth .tr .example

2ndunit of 1st tr .example . . . 2ndunit of mth tr .example
the last unit of 1st tr .example . . . the last unit ofmth tr .example

18

Forward equation using matrix notation

Based on this matrix representation we get:

Z [1] = W [1]X + b [1]

A [1] = σ(Z [2])

Z [2] = W [2]A [1] + b [2]

A [2] = σ(Z [2])

Added b [1] ∈ <4×1 to W [1]X ∈ <4×m is strictly not allowed following the
rules of linear algebra. By defining

b̃ [1] =

| | . . . |

b [1] b [1] . . . b [1]

| | . . . |

 .
we can compute:

Z [1] = W [1]X + b̃ [1]
19

Dimension Summary of the components

• Layer 1
• dim of W[1]

• dim of b [1]

• dim of Z [1]

• dim of A [1]

• Layer r
• dim of W[r]

• dim of b [r]

• dim of Z [r]

• dim of A [r]

• Layer R
• dim of W[R]

• dim of b [R]

• dim of Z [R]

• dim of A [R]

20

Need Activation Functions

• Linear activation function does not help to represent a nonlinear
mapping between input and output. Linear activation function is
mainly used for regression task in the output Layer

• Non-linear Activation function are non-linear differential functions.
Nonlinear activation functions are mainly used in the hidden layers
and in output layer depending the task.

• The choice of activation function is determined by the nature of the
data and the assumed distribution of target variables.

• For binary classification: sigmoid activation for the output layer
• Multiclass classification task: softmax activation for the output layer

• Popular activations functions are: sigmoid, ReLU, Soft ReLU, Hard
Threshold, Hyperbolic Tangent

21

Sigmoid function

• Historically, the sigmoid was the mostly used activation function
• The sigmoid activation saturates at either tail with a value of 0 or 1.
• Thus gradient is almost zero→ make the gradient vanish and no

signal will flow through the corresponding neuron.

σ(z) = g(z) =
1

1 + e−z

d
dz
σ(z) = σ(z)(1 − σ(z))

0.00

0.25

0.50

0.75

1.00

−5 0 5
x

Sigmoid

0.00

0.05

0.10

0.15

0.20

0.25

−5 0 5
x

Derivative

22

ReLU function

Rectified Linear Units is very popular. It is not linear and provides the
same benefits as Sigmoid but with better performance.

ReLU(z) = max (0, z)
d
dz

ReLU(z) =
{ 1 if z > 0

0 if z < 0
undefined if z = 0

0

1

2

3

4

−4 −2 0 2 4
x

ReLU

0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4
x

Derivative

Drawback: dead ReLU means can
die with an output of zero for a
negative value input→ cause
problems in backpropagation→ the
gradients will be zero for one
negative value input

23

LeakyRelu function

Leaky Relu is a variant of ReLU. Instead of being 0 when z < 0, a leaky
ReLU allows a small, non-zero, constant gradient α (usually, α = 0.01).

LeaklyReLU(z) = max (αz, z)
d
dz

LeaklyReLU(z) =

α if z < 0

1 if z > 0

0

1

2

3

4

−4 −2 0 2 4
x

LeaklyReLU

0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4
x

Derivative

24

Tanh function

Tanh squashes a real-valued number to the range [−1, 1] (with
“S”-shaped). But unlike Sigmoid, its output is zero-centered. The gradient
of tanh is stronger than sigmoid.

In practice the tanh non-linearity is always preferred to the sigmoid
nonlinearity.

tanh(z) =
ez − e−z

ez + e−z

d
dz

tanh(z) = 1 − tanh(z)2

−1.0

−0.5

0.0

0.5

1.0

−5 0 5
x

TanH

0.00

0.25

0.50

0.75

1.00

−5 0 5
x

Derivative

25

Simple Example in action

Task: Derive the backpropagation algorithm this neural network:

• 3 inputs, 2 Layers
• ReLu activations function for the first Layer
• identity function for the output layer

26

Forward equations

z[1] = W [1]x + b [1]

a [1] = ReLu(Z [1])

z[2] = W [2]a [1] + b [2]

ŷ = a [2] = g(z[2])

• Question 1: which cost function to used? J =??

• Question 2: Dimension of our objects. replace the ??

• d is the number of features and x ∈??
• m1 number of neurons in layer 1 and so W [1] ∈??
• m2 = 1 number of neurons in output layer and so W [2] ∈??

27

Task: Computing derivatives using Chain Rule using Backward strategy:

-(1) Compute ∂J
∂W [2]

i

then get vectorize version ∂J
∂W [2]

-(2) Compute ∂J
∂W [1]

ij

then get vectorize version ∂J
∂W [1]

-(3) Compute ∂J
∂Z [1]

i

then get vectorize version ∂J
∂Z [1]

-(4) Compute ∂J
∂a [1]

i

then get vectorize version ∂J
∂a [1]

28

• Step 1

∂J

∂W [2]
i

=
∂J
∂ŷ

∂ŷ

∂W [2]
i

= (̂y − y)
∂ŷ

∂W [2]
i

= (̂y − y)a [1]
i

where ŷ =
∑m1

i=1 W [2]
i a [1]

i + b [2]

∂J
∂W [2]

= (̂y − y)a [1]T ∈ <1×m1

Prove the following one
∂J
∂b [2]

= (̂y − y) ∈ <

29

• Step 2

∂J

∂W [1]
ij

=
∂J

∂z[1]
i

∂z[1]
i

∂W [1]
ij

=
∂J

∂z[1]
i

xj

where z[1]
i =

∑m1
k=d W [1]

ik xk + b [1]
i

∂J
∂W [1]

=
∂J
∂z[1]

xT ∈ <m1×d

Indicate the dimension of each object (above)

30

• Step 3

∂J

∂z[1]
i

=
∂J

∂a [1]
i

∂a [1]
i

∂z[1]
i

=
∂J

∂a [1]
i

1
{z[1]

i >0}

∂J
∂z[1]

=
∂J
∂a [1]

� σ
′

(z)

where σ
′

(·) is the element-wise derivative of the activation function σ (here
ReLU function}) and � denotes the element-wise product of two vectors of
the same dimensionality.

Indicate the dimension of each object (above)

31

• Step 4

∂J

∂a [1]
i

=
∂J
∂ŷ

∂ŷ

∂a [1]
i

= (̂y − y)w [2]
i

where ŷ =
∑m1

i=1 W [2]
i a [1]

i + b [2]

∂J
∂a [1]

= (̂y − y)W [2]T

32

Algorithm : Back-propagation for two-layer neural netwoks

1. Compute the values of z[1], a [1] and ŷ using forward pass
2. Compute

δ[2] =
∂J
∂ŷ

= (̂y − y)

δ[1] =
∂J
∂Z [1]

= (W [2]T (̂y − y)) � 1{z[1]>0}

3. Compute

∂J
∂W [2]

= δ[2]a [1]T

∂J
∂b [2]

= δ[2]

∂J
∂W [1]

= δ[1]xT

∂J
∂b [1]

= δ[1]

33

Take Home Message

• Perceptron

• Multi-layer Perceptron

• Activation function

• Back propagation

• "Dead Neuron"

34

General Case with r layers

Consider the general case of a fully-connected Multi-layer networks
defining by the following equations:

a [0] = x

z[1] = W [1]a [0] + b [1]

a [1] = ReLu(Z [1])

z[2] = W [2]a [1] + b [2]

a [2] = ReLu(Z [2])

. . . = . . .

z[r−1] = W [r−1]a [r−2] + b [r−1]

a [r−1] = ReLu(Z [r−1])

z[r] = W [r]a [r−1] + b [r]

ŷ = a [r] = z[r]

J =
1
2

(y − ŷ)2
35

Back-propagation multi-layer

• Weights and bias depend of intermediate following intermediate
variables:

z[k] = W [k]a [k−1] + b [k], k ∈ {1, . . . , r}

• Cost function depends of weights and bias via the intermediate
variables z[k].

• Using chain rule we get

∂J

∂W [k]
=

∂J
∂z[k]

a [k−1]T

∂J
∂b [k]

=
∂J
∂z[k]

36

Using similar notation as last lecture, we define δ[k] = ∂J
∂z[k] and compute it

in a backward manner from k = r to 1.

• k=r:
δ[r] =

∂J
∂z[r]

= (z[r] − y)

• k<r:
δ[k] =

∂J
∂z[k]

=
∂J
∂a [k]

� ReLU
′

(z[k])

By noting that z[k+1] = W [k+1]a [k] + b [k+1] and assuming we have
computed δ[k+1] then we try to compute δ[k]. First note that

∂J
∂a [k]

= W [k+1]T ∂J
∂z[k+1]

then we get
δ[k] =

(
W [k+1]T ∂J

∂z[k+1]

)
� ReLU

′

(z[k])

=
(
W [k+1]Tδ[k+1]

)
� ReLU

′

(z[k])

37

Algorithm : Back-propagation for multi-layer

1. Compute the values of z[k], a [k] for k = 1, . . . , r and J using forward
pass

2. for k = r to 1 do

• if k = r then compute δ[r] = ∂J
∂z[r]

• if k , r then compute δ[k] = ∂J
∂z[k] = (W [k+1]Tδ[k+1]) � ReLU

′

(z [k])

• Compute

∂J
∂W [k]

= δ[k]a [k−1]T

∂J
∂b [k]

= δ[k]

38

How to compute derivatives ?

• Manuel using rules of differentiation.

• Analytical derivatives: unncessary when we just need numerical
derivatives for optimization

• Symbolic derivatives: Symbolic computation with Mathematica,
Maple, Theano (for deep learning).

• Main issue: expression swell

From tables from Automatic Differntiation in Machine Learning: a Survey (2018) 39

https://arxiv.org/pdf/1502.05767.pdf

How to compute derivatives ?

• Numerical differentiation

Let f : <n →< approximate the gradient ∇f =
(
∂f
∂x1
, . . . , ∂f

∂xn

)
using

∂f
∂xi
≈

f (x + hei) − f (x)
h

- need to choose a small h and face to approximation errors

• Can do better with higher-order finite differences:

∂f
∂xi
≈

f (x + hei) − f (x − hei)
2h

But increase in complexity and never eliminate the error

40

Automatic differentiation

Examples and tables from Automatic Differntiation in Machine Learning: a
Survey (2018)

• Automatic differentiation: Techniques to numerically evaluate the
derivative of a function specified by a computer program by exploiting
the chain rule associated to a computational graph.

• Based on the decomposition of the target function to elementary
operations of simple function

• AD: “Refers to a general way of taking a program which computes a
value, and automatically constructing a procedure for computing
derivatives of that value.” from Roger Grosse.

41

https://arxiv.org/pdf/1502.05767.pdf
https://arxiv.org/pdf/1502.05767.pdf

Automatic differentiation

• AD shared roots with backpropagation algorithm for NN but more
general

• reverse mode accumulation:

• forward mode accumulation

• Main principles:

• build an augmented algorithm and keep for each value a primal and a
derivative component

• Algorithms are compositions of a finite set of elementary operations
(with known derivatives)

42

Foward mode

• Consider y = f (x1, x2) = ln(x1) + x1x2 − sin(x2).
• Computational graph (elementary operations)

• variables vi−n = xi , i = 1, . . . , n are the inputs variables
• vi , i = 1, . . . , n are the working variables
• ym−i = vl , i = m − 1, . . . , 0 output variables

43

Foward mode

• Select a variable of differentiation xi (we choose he x1)
• augment each working variable value vj with v̇j = ∂vj

∂xi

• set ẋi = 1 and run a forward pass

44

Foward mode

Could you check we get the good derivatives ?

45

Foward mode

• Forward mode AD efficient and straightforward for function
f : <→ <m

• Derivatives dyi
dx computed with just one forward pass

• BUT for function f : <n →< forward pass requires n evaluations to
compute the gradient

∇f =
(
∂f
∂x1

, . . . ,
∂f
∂xn

)

• In the case of f : <n →<m where n >> m better to use the reverse
mode

46

Reverse mode

• Backpropagation is just a special case of reverse mode AD

• Origins in the same papers (Bryson and Ho, 1969, Werbos, 1974)

• Backpropagation brought to fame by Rumelhart et al. (Nature, 1986)

47

Reverse mode in action

• run a forward pass

• select a dependent variable yj

• augment each intermediate value vi with an adjoint v̄i = ∂yj

∂vi

v̄i =
∂yj

∂vi
=

∑
j:child of i

v̄j
∂vj

∂vi

• set ȳj = 1 and run backward

48

Reverse mode in action

49

Reverse mode

• Significantly less costly to evaluate for functions with a large number
of inputs

• for f : <n →< only one application of the reverse mode to get the
full gradient

∇f =
(
∂f
∂x1

, . . . ,
∂f
∂xn

)
• TensorFlow AutoDiff allows to compute and manipulate gradients

• There are many autodiff libraries (e.g., PyTorch, Tensorflow, Jax, etc.)

50

Want to play ?

y(x0, x1) = (1 + ex0 x1+sin(x0))−1

• Do you recognize a known function ?

• Task: compute ∂y
x0

and ∂y
x1

• Use the two modes of AD

• Solution here

51

https://ocaml.xyz/book/algodiff.html

Weight initialization

• Important Step for optimization

b [l] := b [l] − α

∂J
∂b [l]

W [l] := W [l] − α
∂J
∂W [l]

• W [l] weight matrix of dimension ml ×ml−1 (ml is the size of the layer l)
• b [l] bias vectors odf dimension ml × 1

52

General practice

The biases are initialized with 0 and weights are initialized with random
numbers.

What if weights are initialized with 0? or even same constant value

• Consider a neural network with two hidden units
• Initialize the biases to 0 and all the weights to a constant value γ.

• The output of both hidden units will be the same: ReLU(γx1 + γx2).
• Identical influence on the cost function→ identical gradients.
• Makes hidden units symmetrict→ DNN will perform very poorly. Let

plays Initializing neural networks

53

https://www.deeplearning.ai/ai-notes/initialization/index.html#I

Random initialization

• Random initialization: break the symmetry.

• Initializing much high or low value can result in slower optimization.

• General practice: randomly gerenated from standard normal
distribution.

• However, while working with a (deep) network can potentially lead to
2 issues:

• vanishing gradients
• exploding gradients.

54

Vanishing gradients

• For any activation function, | ∂J
∂W [l] | will get smaller and smaller as we

go backwards with every layer during back propagation.

• The earlier layers are the slowest to train in such a case.

• Thus, the update is minor and results in slower convergence. This
makes the optimization of the loss function slow.

• In the worst case, this may completely stop the neural network from
training further.

• For sigmoid(z) and tanh(z), if your weights are large, then the
gradient will be vanishingly small, effectively preventing the weights
from changing their value.

• With ReLU(z) vanishing gradients are generally not a problem as the
gradient is 0 for negative (and zero) inputs and 1 for positive inputs_

55

Exploding gradients

• This is the exact opposite of vanishing gradients.

• Consider you have non-negative and large weights and small
activations.

• When these weights are multiplied along the layers, they cause a
large change in the cost. Thus, the gradients are also going to be
large.

• Thus the changes in W [l] will be in huge steps.

• Might result in oscillating around the minima or even overshooting the
optimum again and again and the model will never learn!

• Another impact huge values of the gradients may cause number
overflow resulting in incorrect computations or introductions of
NaN’s.

56

Solution

• For networks not too deep: ReLU or leaky RELU activation functions are
relatively robust to the vanishing/exploding gradient issue.

• leaky RELU never has 0 gradient→ never die, training continues.

• For DNN, heuristic to initialize the weights are generally used:

• The most common practice is to draw the element of the matrix W [l]

from normal distribution with variance k/ml−1, where k depends on the
activation function.

• for ReLU activation: k = 2

• for tanh activation: k = 1. The heuristic is called Xavier initialization. It
is similar to the previous one, except that k is 1 instead of 2.

• Another commonly used heuristic is to draw from normal distribution
with variance 2/(ml−1 + ml)

• The bias terms can be safely initialized to 0 as the gradients with respect to
bias depend only on the linear activation of that layer, and not on the
gradients of the deeper layers.

57

Approximation Properties of Multilayer Perceptrons

58

Universal Approximation Theorems

Universal approximators
A two-layer network with linear outputs can uniformly approximate any
continuous function on a compact input domain to arbitrary accuracy.

• This result holds if the activation function is not a polynomial (i.e. tanh,
logistic, and ReLU all works as do sin,cos, exp, etc.)

• See M. Leshno, et al (1991). Multilayer feedforward networks with
non-polynomial activation function can approximate any
function,Neural Networks, vol. 6, pp. 861–867, 1993.

59

Example: Approximation Ability

f (x) = |x |:

• 50 data points in [−1, 1]
• two layers (1 hidden Layer), linear activation (output layer)
• 3 hidden units; tanh activation functions

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3 60

Example: Approximation Ability

f (x) = x2:

• 50 data points in [−1, 1]
• two layers (1 hidden Layer), linear activation (output layer)
• 3 hidden units; tanh activation functions

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3 61

Example: Approximation Ability

f (x) = sin(x):

• 50 data points in [−1, 1]
• two layers (1 hidden Layer), linear activation (output layer)
• 3 hidden units; tanh activation functions

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3 62

Example: Approximation Ability

f (x) = |x |:

• 50 data points in [−1, 1]
• two layers (1 hidden Layer), linear activation (output layer)
• 3 hidden units; tanh activation functions

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3 63

Example: Approximation Ability

f (x) = 1{x>0}:

• 50 data points in [−1, 1]
• two layers (1 hidden Layer), linear activation (output layer)
• 3 hidden units; tanh activation functions

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3 64

Universal Approximation

Leshno and Schocken (1993) showed:

• Let ψ(·) be any non-polynomial function (an activation function).

• Let define f : K −→ < be any continuous function on a compact set
K ⊂ <m

• ∀ε > 0, there exists an integer N (the number of hidden units), and
parameters vi , bi ∈ < such that the function

F(x) =
N∑

i=1

viψ(wT
i x + bi)

satisfies |F(x) − f (x)| > ε for all x ∈ K .

65

Why deep Neural network ?

Continuous multiplication gate Henry W. Lin and Max Tegmark. (2016)
Why does deep and cheap learning work so well?:

Continuous multiplication gate
A neural network with only four hidden units can model multiplication of
two numbers arbitrarily well.

• With µ = 1
4λ2f ′′ (0) then ŷ → x1 × x2 when λ→ 0

66

Regression example

• input: x ∈ R1000

• Output: y ∈ <

Aim build a model for representing a quadratic relation between x and y

ŷ = w1,1x1x1 + w1,2x1x2 + . . . + w1000,1000x1000x1000 = wT x̃

where
x̃ = (x1x1, x1x2, . . . , x1000x1000)T

and
w = (w1,1,w1,2, . . . ,w1000,1000)T

which requires ≈ 1,000×1,000
2 = 500, 000 parameters.

67

Quadratic model

• input: x ∈ R1000

• Output: y ∈ <

Aim build a model for representing a quadratic relation between x and y

Neural network

All products (interaction) with a neural network requires:
4 × 500, 000 = 2 × 106 hidden units and so 2 billion parameters

1000 × (2 × 106) + 2 × 106 parameters
68

Quadratic model with regression

• input: x ∈ R1000

• Output: y ∈ <

Aim build a model for representing a quadratic relation between x and y

• Consider that only 10 of the regressors xixj are of importance

ŷ = w1,1x1x1 + w1,2x1x2 + . . . + w1000,1000x1000x1000 = wT x̃

where
x̃ = (x1x1, x1x2, . . . , x1000x1000)T

and
w = (w1,1,w1,2, . . . ,w1000,1000)T

which still requires ≈ 1,000×1,000
2 = 500, 000 parameters.

69

Why Neural network ?

• input: x ∈ R1000

• Output: y ∈ <

Aim build a model for representing a quadratic relation between x and y

• Consider that only 10 of the regressors xixj are of importance
• Neural Network: for 10 products with NN −→ 4 × 10 hidden units
−→ 40, 000 parameters

1000 × 40 + 40 = 40, 040 parameters

70

Why deep Neural network ?

• Higher complexity model: polynomials of degree 1000
• Keep 250 products in each layer→ 250 × 4 = 1, 000 hidden units.

Linear regression would require ≈ 10001000

1000!
71

Take Home Message

• Automatic Differentation

• Weight Initialization

• Forward mode AD

• Universal approximation theorem

72

Overfitting

How our model will generalize to new samples that we didn’t use to train

Solution to quantify the true generalization error is to split the data:

• First version: holdout cross-validation

• Second version: K-fold cross-validation

73

Overfitting for Neural network

• Might need a very large network to represent a function

• Neural Network: can learn any function !!

• OVERFITTING is a serious concern

• Solution: Training/validation/test, k-fold cross-validation, dropout,
regularisation

74

Example: curve fitting

• N = 10 points from true function f (x) = sin(2πx)
• added noise
• Task: fit a polynomial model of degree M ∈ {0, . . . , 9}
• Evaluate RMSE on test data

From Bishop’s Pattern Recognition and Machine Learning

75

Example: curve fitting

• M = 3 looks good
• M = 9 overfit ?

From Bishop’s Pattern Recognition and Machine Learning
76

Example: curve fitting

• RMSE on train
• RMSE on test (100 points generated from same process)

From Bishop’s Pattern Recognition and Machine Learning

77

Example: curve fitting

• over-fitting problem become less severe as the size of the data set
increases.

From Bishop’s Pattern Recognition and Machine Learning

78

Early stopping

• Early stopping: stopping training early since overfitting typically
increases as training progresses.

• keras offers patience parameter. Interrupts training when accuracy
has stopped improving for more than k epochs.

79

Example in Action

• Demo on housing dataset

• More during tutorial

80

Split Data for Neural Network

How the data are split for Neural Network ?

• Training Data: used for Training models

• Validation Data: used for optimizing hyperparameters, choosing
between models

• Test Data: for evaluating the performance of the final model

81

Overfitting: Regularization

• Regularization: process to improve generalization, restrict the
flexibility of the model to prevent overfitting

• Example: Ridge Regression

• Principle: add Prior R(θ) in training objective: J(θ) + λR(θ)

• Gradient descent update to minimize J(θ) : θ ← θ − α ∂J
∂θ

• The gradient descent update to minimize the L2 regularized cost
J(θ) + λR(θ) results in weight decay:

θ ← θ − α
∂(J + λR)

∂θ

= θ − α

(
∂J
∂θ

+ λ
∂R
∂θ

)
= θ − α

(
∂J
∂θ

+ λθ
)

= (1 − αλ)θ − α
∂J
∂θ

82

Overfitting: Regularization

• Lasso penalty: L1 norm, λ1
∑d

i |wi |

• Ridge penalty: L2 norm, λ2
∑d

i w2
i

• elastic net penalty: combine L1 and L2 norms

• Different weight regularization could be added to different layers

83

Regularization: Dropout

Dropout is a popular and efficient regularization technique.

• Srivastava, Nitish et al. (2014). “Dropout: A simple way to prevent
neural networks from overfitting”. In: The Journal of Machine
Learning Research 15.1, pp. 1929-1958.

Consider the following network to be trained

84

Regularization: Dropout

- Dropout is a regularization technique where
we during training randomly drop units.

- The term dropout refers to dropping out
units (hidden and visible) in a neural
network.

- By dropping a unit out, meaning temporarily
removed it from the network, along with all
its incoming and outgoing connections.

- The choice of which units to drop is
random.

85

Dropout: principle

• 1st iteration: Keep and update each unit with probability p, drop
remanding ones

• 2st iteration: Keep and update another random selection of units,
drop remanding units.

• tth iter Continue in the same manner.
• Test time Use all units. Weight multiplied by p.

86

Why does this avoid overfitting?

Dropout can be viewed as an ensemble member with two clever
approximations.

Ensemble methods principle: exploit multiple learning models to obtain
better predictive performance than could be obtained from any of the
contributing models.

1) For a neural network with M units there are 2M possible thinned
neural networks. Consider this as our ensamble.

• Approximation 1: At each iteration we sample one ensemble
member and update it. Most of the networks will never be updated
since 2M >> the number of iterations.

87

Why does this avoid overfitting?

2) At test time we would need to average over all 2M which is not
feasible when 2M is huge.

• Approximation 2: Instead, at test time we evaluate the full neural
network where the weight are multiplied by p.

It has been empirically shown that this is a good approximation of the
average of all ensemble members.

88

Dropout: Implementation

• Current implementation: scale factor p during training and testing

• Advantage: no need to remember at test time which p we used for
training

89

Reminder of Biais-variance decomposition

• Consider the true model y = f (x) + ε

• Let ŷ = ŷ(x∗;DT) the prediction for the input sample x∗ using the train
dataset DT

• Task: Decomposition of expected mean square error of ŷ

EDT [(̂y − y)2] =

=

=

= EDT [(̂y − EDT [̂y])2]︸ ︷︷ ︸
variance

+ (EDT [̂y] − f)2︸ ︷︷ ︸
Bias2

+ EDT [ε2]︸ ︷︷ ︸
Irreducible error

Decomposition for a specific input sample x∗.

90

Reminder of Biais-variance decomposition

Need average over all test samples

E∗[EDT [(̂y − y)2]]︸ ︷︷ ︸
Expected MSE

average over test sample

= E∗[EDT [(̂y − EDT [̂y])2]]︸ ︷︷ ︸
Variance

average over test sample

+ E∗[(EDT ([̂y] − f)2]︸ ︷︷ ︸
Bias2

average over test sample

+ σ2︸︷︷︸
Irreducible error

• Biais: your model cannot represent the true model f −→ red{Low
model complexity}

• Variance: Part of the MSE due to the variance in the training set,
sensitivity of your model to the training data red{High model
complexity}

91

Practice to track Biais and Variance

• Compare Training data error and test data error

• Bias is related to training error

• variance is related to the difference betwen test error and training
error

• Short practice during our tutorial on MNIST data

92

Enesemble Methods: principle

• Let ŷ1, . . . , ŷB be predictions from B different models

• ŷ1, . . . , ŷB are identically distributed (might be not independent)

• E [̂yi] = µ, Var [̂yi] = σ2, cor [̂yi , ŷj] = %

E

 1
B

B∑
i=1

ŷi

 = µ, and Var

 1
B

B∑
i=1

ŷi

 =
1 − %

B
σ2 + %σ2

-

Conclusion Model averaging does not affect bias but reduces variance

93

Bagging, Bootstrap aggregating

Aim: produces different prediction from models trained on different training
dataset

• IMPOSSIBLE: only one training dataset

• SOLUTION: Bootstrap your training data to mimic different dataset

• sample data with replacement

• Train a model on each of the rseampled data sets.

• Average their predictions

94

Difference between Bagging and Dropout

• Bagging all models are their own parameters while in dropout the
different models (the sub-networks) share parameters.

• Bagging all models trained until convergence while dropout each
sub-network is only trained for a singe gradient step.

• Bagging are trained on bootstrapped version of the whole data set
while dropout sub-model is trained on randomly mini-batach of the
data

Both Bagging and dropout are used to avoid overfitting and reduce the
variance of the model

95

Batch Nomalization Normalizing inputs to speed up learning

• Compute mean and variance of training data

µj =
1
m

m∑
i=1

x [i]
j , σ2

j =
1
m

m∑
i=1

(x [i]
j − µj)2

• Normalize

x̃ [i]
j =

x [i]
j − µj

σj

- µj and σ2
j are used to normalize validation/test data.

96

Why normalized the inputs data

-If inputs x1 and x2 are not normalized→ cost function considered as
unormalized→ slower convergence.

97

Batch Normalization on each mini-batch

• Nomalized the inputs of each layer: Batch Normalization (BN).

• Introduced in 2015 and it is one of the most efficient techniques for
training deep neural networks.

• BN: enables to use higher learning rate without getting issues with
vanishing or exploding gradients.

• BN: slight regularization effect.

98

Batch Normalization on each mini-batch

• Compute mean and variance for every unit j in all layers l

µ
(l)
j =

1
mbatch

mbatch∑
i=1

z(l)[i]
j , (σ(l)

j)2 =
1
m

m∑
i=1

(z(l)[i]
j − µ

(l)
j)2

where z(l)[i]
j is the hidden unit before the activation

• Normalize every unit j in all layers l

z̄[i]
j =

z(l)[i]
j − µ

(l)
j√

(σ(l)
j)2 + ε

• Scale and shift every unit

z̃[i]
j = γ(l)

j z̄[i]
j + β(l)

j

where γ(l
l and β(l)

j are learned parameters (called batch normalization layer
) that allow the new variable to have any mean and standard deviation.

99

Reading to understand: Why batch normalization ?

• The motivation of the prinsep paper is based on internal covariante
shift: Ioffe, Sergey, and Christian Szegedy. “Batch Normalization:
Accelerating Deep Network Training by reducing Internal Covariate
Shift.” International Conference on Machine Learning. 2015.

• It has been recently shown that it makes the loss landscape more
smooth and easier to optimize: Santurkar, Shibani, et al. ”How does
batch normalization help optimization?.” Advances in Neural
Information Processing Systems. 2018.

100

Take Home Message

• Overfitting

• Dropout

• Regularization

• Batch Normalization

• Bagging

101

Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical
biophysics 5.4 (1943), pp. 115–133.

102

