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Outline of Lecture 1/3

• Review: shallow Neural Network

• Full Neural Network

• Matrix Representation

• Activation Function and Derivative

• Backpropagation on a simple example
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Outline of Lecture 2/3

• Backpropagation on a DNN

• How to compute derivative?: Automatic differentiation

• Approximation Properties of Multilayer Perceptrons

• Weight initialization
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Outline of Lecture 3/3

• Regularization

• Dropout

• Batch-Normalization

• About vanishing gradients
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Review: The formal Neuron (1943) [1]

• Mapping from input x to output y

• Linear (affine) mapping: z = wT x + b (linear model)
• Non-linear activation function σ(·)→ ŷ = σ(z)

5



Formal Neuron: classical models

• Regression Task (y ∈ <).

• Identity function, σ(x) = x, apply on the linear predictor xT w
• Equivalent to the Linear model: E[Y |x] = xT w

• Binary Classification Task (y ∈ {0, 1}):

• Sigmoid function, σ(x) = 1
1+e−z , apply on the linear predictor xT w.

• Equivalent to the logistic model: P[Y = 1|x] = xT w
1+exp(xT w)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigmoid

x

σ(
x)

6



Formal Neuron: extension

• Multi-class Classification (y ∈ {1, . . . ,K })

• concatenation of K formal neurons
• activation function called “softmax”
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Beyond Linear Classification

• Logistic and Softmax models produce linear boundaries

• Solution: add a layer
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A short Demo
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One hidden Layer Neural Network
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Matrix Notation

• The superscript number [i] for denoting the layer number and the
subscript number j denotes the neuron number in a particular layer

• x is the input vector consisting of 3 features.
• w [i]

j is the weight vector associated with neuron j present in the layer
i

• b [i]
j is the bias scalar associated with neuron j present in the layer i.

• z[i]
j is the intermediate output associated with neuron j present in

the layer i.
• a [i]

j is the final output associated with neuron j present in the layer i.
• As an example σ(·) is the sigmoid activation function
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Forward-propagation equations



z[1] = W[1]x + b [1]

a [1] = σ(z[1])

z[2] = W[2]a [1] + b [2]

ŷ = a [2] = σ(z[2])

where

W[1] =
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Why non-linear Activation is important

Consider this neural network without activation functions:

z[1] = W [1]x + b [1]

ŷ = z[2] = W [2]z[1] + b [2]

Then, it follows


z[1] = W [1]T x + b [1]

ŷ = z[2] = W [2]W [1]x + W [2]b [1] + b [2]

ŷ = z[2] = Wnewx + bnew

• The output is then a linear combination of a new weight matrix, input
and a new bias.

• Identity activation function: NN will output linear output of the input.
• Composition of two linear functions is a linear function.
• Linear activation function is generally used for the output layer in

case of regression. 13



Deep Learning: N layers Neural Network

• The elementary bricks of deep learning are the neural networks, that
are combined to form the deep neural networks

• Deep learning architectures are based on deep cascade of layers.

• Several types of architectures:

• The multilayer perceptrons, that are the oldest and simplest ones
• The Convolutional Neural Networks (CNN), particularly adapted for

image processing
• The recurrent neural networks, used for sequential data such as text

or times series.
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Multi-layer fully-connected; Multi-Layer Perceptron; Feed-forward
Neural Networks
• Multilayer network: Cascade of multiple layers, each of which is a

nonlinear transformation.

• A multilayer network consisting of fully connected layers is called a
multi-layer perceptron

• The units are connected together into a directed acyclic graph
which gives a feed-forward neural network
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Multi-layer fully-connected neural networks

Forward pass equation



a [1] = g[1](W [1]x + b [1])

a [2] = g[2](W [2]a [1] + b [2])

. . . = . . .

a [r−1] = g[r−1](W [r−1]a [r−2] + b [r−1])

ŷ = a [r ] = g[r ](W [r ]a [r−1] + b [r ])

• r layers based on r weight matrices W [1], . . . ,W [r ]

• r bias vectors b [1], . . . , b [r ].
• r activation functions noted g[r ] which might be different for each

layer r .
• The number of neurons in each layer could be also be not equal

(noted mr )
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How do we count layers in a Deep Neural Network?

When counting layers in a neural network we count hidden layers as well
as the output layer, but we don’t count an input layer.

It is a ?? layer neural network with ?? hidden layers.
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Vectorizing Across Multiple Training Examples

• Consider m training samples x [1], . . . , x [m]

• Thus m predictions x (i) −→ a [2](i) = ŷ i = 1, . . .m
• Define the matrices X, Z[1] and A[1]:

X =


| | . . . |

x (1) x (2) . . . x (m)

| | . . . |

 , Z[1] =


| | . . . |

z[1](1) z[1](2) . . . z[1](m)

| | . . . |


A[1] =


| | . . . |

a [1](1) a [1](2) . . . a [1](m)

| | . . . |


A [1] =


1st unit of 1.tr .example . . . 1st unit of mth .tr .example

2ndunit of 1st tr .example . . . 2ndunit of mth tr .example
the last unit of 1st tr .example . . . the last unit ofmth tr .example


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Forward equation using matrix notation

Based on this matrix representation we get:



Z [1] = W [1]X + b [1]

A [1] = σ(Z [2])

Z [2] = W [2]A [1] + b [2]

A [2] = σ(Z [2])

Added b [1] ∈ <4×1 to W [1]X ∈ <4×m is strictly not allowed following the
rules of linear algebra. By defining

b̃ [1] =


| | . . . |

b [1] b [1] . . . b [1]

| | . . . |

 .
we can compute:

Z [1] = W [1]X + b̃ [1]
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Dimension Summary of the components

• Layer 1
• dim of W[1]

• dim of b [1]

• dim of Z [1]

• dim of A [1]

• Layer r
• dim of W[r ]

• dim of b [r ]

• dim of Z [r ]

• dim of A [r ]

• Layer R
• dim of W[R]

• dim of b [R]

• dim of Z [R]

• dim of A [R]
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Need Activation Functions

• Linear activation function does not help to represent a nonlinear
mapping between input and output. Linear activation function is
mainly used for regression task in the output Layer

• Non-linear Activation function are non-linear differential functions.
Nonlinear activation functions are mainly used in the hidden layers
and in output layer depending the task.

• The choice of activation function is determined by the nature of the
data and the assumed distribution of target variables.

• For binary classification: sigmoid activation for the output layer
• Multiclass classification task: softmax activation for the output layer

• Popular activations functions are: sigmoid, ReLU, Soft ReLU, Hard
Threshold, Hyperbolic Tangent
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Sigmoid function

• Historically, the sigmoid was the mostly used activation function
• The sigmoid activation saturates at either tail with a value of 0 or 1.
• Thus gradient is almost zero→ make the gradient vanish and no

signal will flow through the corresponding neuron.

σ(z) = g(z) =
1

1 + e−z

d
dz
σ(z) = σ(z)(1 − σ(z))
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ReLU function

Rectified Linear Units is very popular. It is not linear and provides the
same benefits as Sigmoid but with better performance.

ReLU(z) = max (0, z)
d
dz

ReLU(z) =
{ 1 if z > 0

0 if z < 0
undefined if z = 0

0
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Drawback: dead ReLU means can
die with an output of zero for a
negative value input→ cause
problems in backpropagation→ the
gradients will be zero for one
negative value input
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LeakyRelu function

Leaky Relu is a variant of ReLU. Instead of being 0 when z < 0, a leaky
ReLU allows a small, non-zero, constant gradient α (usually, α = 0.01).

LeaklyReLU(z) = max (αz, z)
d
dz

LeaklyReLU(z) =

α if z < 0

1 if z > 0
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Tanh function

Tanh squashes a real-valued number to the range [−1, 1] (with
“S”-shaped). But unlike Sigmoid, its output is zero-centered. The gradient
of tanh is stronger than sigmoid.

In practice the tanh non-linearity is always preferred to the sigmoid
nonlinearity.

tanh(z) =
ez − e−z

ez + e−z

d
dz

tanh(z) = 1 − tanh(z)2

−1.0

−0.5

0.0

0.5

1.0

−5 0 5
x

TanH

0.00

0.25

0.50

0.75

1.00

−5 0 5
x

Derivative

25



Simple Example in action

Task: Derive the backpropagation algorithm this neural network:

• 3 inputs, 2 Layers
• ReLu activations function for the first Layer
• identity function for the output layer
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Forward equations



z[1] = W [1]x + b [1]

a [1] = ReLu(Z [1])

z[2] = W [2]a [1] + b [2]

ŷ = a [2] = g(z[2])

• Question 1: which cost function to used? J =??

• Question 2: Dimension of our objects. replace the ??

• d is the number of features and x ∈??
• m1 number of neurons in layer 1 and so W [1] ∈??
• m2 = 1 number of neurons in output layer and so W [2] ∈??
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Task: Computing derivatives using Chain Rule using Backward strategy:

-(1) Compute ∂J
∂W [2]

i

then get vectorize version ∂J
∂W [2]

-(2) Compute ∂J
∂W [1]

ij

then get vectorize version ∂J
∂W [1]

-(3) Compute ∂J
∂Z [1]

i

then get vectorize version ∂J
∂Z [1]

-(4) Compute ∂J
∂a [1]

i

then get vectorize version ∂J
∂a [1]
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• Step 1

∂J

∂W [2]
i

=
∂J
∂ŷ

∂ŷ

∂W [2]
i

= (̂y − y)
∂ŷ

∂W [2]
i

= (̂y − y)a [1]
i

where ŷ =
∑m1

i=1 W [2]
i a [1]

i + b [2]

∂J
∂W [2]

= (̂y − y)a [1]T ∈ <1×m1

Prove the following one
∂J
∂b [2]

= (̂y − y) ∈ <
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• Step 2

∂J

∂W [1]
ij

=
∂J

∂z[1]
i

∂z[1]
i

∂W [1]
ij

=
∂J

∂z[1]
i

xj

where z[1]
i =

∑m1
k=d W [1]

ik xk + b [1]
i

∂J
∂W [1]

=
∂J
∂z[1]

xT ∈ <m1×d

Indicate the dimension of each object (above)
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• Step 3

∂J

∂z[1]
i

=
∂J

∂a [1]
i

∂a [1]
i

∂z[1]
i

=
∂J

∂a [1]
i

1
{z[1]

i >0}

∂J
∂z[1]

=
∂J
∂a [1]

� σ
′

(z)

where σ
′

(·) is the element-wise derivative of the activation function σ (here
ReLU function}) and � denotes the element-wise product of two vectors of
the same dimensionality.

Indicate the dimension of each object (above)
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• Step 4

∂J

∂a [1]
i

=
∂J
∂ŷ

∂ŷ

∂a [1]
i

= (̂y − y)w [2]
i

where ŷ =
∑m1

i=1 W [2]
i a [1]

i + b [2]

∂J
∂a [1]

= (̂y − y)W [2]T
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Algorithm : Back-propagation for two-layer neural netwoks

1. Compute the values of z[1], a [1] and ŷ using forward pass
2. Compute

δ[2] =
∂J
∂ŷ

= (̂y − y)

δ[1] =
∂J
∂Z [1]

= (W [2]T (̂y − y)) � 1{z[1]>0}

3. Compute

∂J
∂W [2]

= δ[2]a [1]T

∂J
∂b [2]

= δ[2]

∂J
∂W [1]

= δ[1]xT

∂J
∂b [1]

= δ[1]
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Take Home Message

• Perceptron

• Multi-layer Perceptron

• Activation function

• Back propagation

• "Dead Neuron"
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General Case with r layers

Consider the general case of a fully-connected Multi-layer networks
defining by the following equations:



a [0] = x

z[1] = W [1]a [0] + b [1]

a [1] = ReLu(Z [1])

z[2] = W [2]a [1] + b [2]

a [2] = ReLu(Z [2])

. . . = . . .

z[r−1] = W [r−1]a [r−2] + b [r−1]

a [r−1] = ReLu(Z [r−1])

z[r ] = W [r ]a [r−1] + b [r ]

ŷ = a [r ] = z[r ]

J =
1
2

(y − ŷ)2
35



Back-propagation multi-layer

• Weights and bias depend of intermediate following intermediate
variables:

z[k ] = W [k ]a [k−1] + b [k ], k ∈ {1, . . . , r}

• Cost function depends of weights and bias via the intermediate
variables z[k ].

• Using chain rule we get


∂J

∂W [k ]
=

∂J
∂z[k ]

a [k−1]T

∂J
∂b [k ]

=
∂J
∂z[k ]

36



Using similar notation as last lecture, we define δ[k ] = ∂J
∂z[k ] and compute it

in a backward manner from k = r to 1.

• k=r:
δ[r ] =

∂J
∂z[r ]

= (z[r ] − y)

• k<r:
δ[k ] =

∂J
∂z[k ]

=
∂J
∂a [k ]

� ReLU
′

(z[k ])

By noting that z[k+1] = W [k+1]a [k ] + b [k+1] and assuming we have
computed δ[k+1] then we try to compute δ[k ]. First note that

∂J
∂a [k ]

= W [k+1]T ∂J
∂z[k+1]

then we get
δ[k ] =

(
W [k+1]T ∂J

∂z[k+1]

)
� ReLU

′

(z[k ])

=
(
W [k+1]Tδ[k+1]

)
� ReLU

′

(z[k ])
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Algorithm : Back-propagation for multi-layer

1. Compute the values of z[k ], a [k ] for k = 1, . . . , r and J using forward
pass

2. for k = r to 1 do

• if k = r then compute δ[r ] = ∂J
∂z[r ]

• if k , r then compute δ[k ] = ∂J
∂z[k ] = (W [k+1]Tδ[k+1]) � ReLU

′

(z [k ])

• Compute

∂J
∂W [k ]

= δ[k ]a [k−1]T

∂J
∂b [k ]

= δ[k ]
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How to compute derivatives ?

• Manuel using rules of differentiation.

• Analytical derivatives: unncessary when we just need numerical
derivatives for optimization

• Symbolic derivatives: Symbolic computation with Mathematica,
Maple, Theano (for deep learning).

• Main issue: expression swell

From tables from Automatic Differntiation in Machine Learning: a Survey (2018) 39

https://arxiv.org/pdf/1502.05767.pdf


How to compute derivatives ?

• Numerical differentiation

Let f : <n →< approximate the gradient ∇f =
(
∂f
∂x1
, . . . , ∂f

∂xn

)
using

∂f
∂xi
≈

f (x + hei) − f (x)
h

- need to choose a small h and face to approximation errors

• Can do better with higher-order finite differences:

∂f
∂xi
≈

f (x + hei) − f (x − hei)
2h

But increase in complexity and never eliminate the error

40



Automatic differentiation

Examples and tables from Automatic Differntiation in Machine Learning: a
Survey (2018)

• Automatic differentiation: Techniques to numerically evaluate the
derivative of a function specified by a computer program by exploiting
the chain rule associated to a computational graph.

• Based on the decomposition of the target function to elementary
operations of simple function

• AD: “Refers to a general way of taking a program which computes a
value, and automatically constructing a procedure for computing
derivatives of that value.” from Roger Grosse.

41
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Automatic differentiation

• AD shared roots with backpropagation algorithm for NN but more
general

• reverse mode accumulation:

• forward mode accumulation

• Main principles:

• build an augmented algorithm and keep for each value a primal and a
derivative component

• Algorithms are compositions of a finite set of elementary operations
(with known derivatives)

42



Foward mode

• Consider y = f (x1, x2) = ln(x1) + x1x2 − sin(x2).
• Computational graph (elementary operations)

• variables vi−n = xi , i = 1, . . . , n are the inputs variables
• vi , i = 1, . . . , n are the working variables
• ym−i = vl , i = m − 1, . . . , 0 output variables
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Foward mode

• Select a variable of differentiation xi (we choose he x1)
• augment each working variable value vj with v̇j = ∂vj

∂xi

• set ẋi = 1 and run a forward pass

44



Foward mode

Could you check we get the good derivatives ?
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Foward mode

• Forward mode AD efficient and straightforward for function
f : <→ <m

• Derivatives dyi
dx computed with just one forward pass

• BUT for function f : <n →< forward pass requires n evaluations to
compute the gradient

∇f =
(
∂f
∂x1

, . . . ,
∂f
∂xn

)

• In the case of f : <n →<m where n >> m better to use the reverse
mode

46



Reverse mode

• Backpropagation is just a special case of reverse mode AD

• Origins in the same papers (Bryson and Ho, 1969, Werbos, 1974)

• Backpropagation brought to fame by Rumelhart et al. (Nature, 1986)

47



Reverse mode in action

• run a forward pass

• select a dependent variable yj

• augment each intermediate value vi with an adjoint v̄i = ∂yj

∂vi

v̄i =
∂yj

∂vi
=

∑
j:child of i

v̄j
∂vj

∂vi

• set ȳj = 1 and run backward
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Reverse mode in action
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Reverse mode

• Significantly less costly to evaluate for functions with a large number
of inputs

• for f : <n →< only one application of the reverse mode to get the
full gradient

∇f =
(
∂f
∂x1

, . . . ,
∂f
∂xn

)
• TensorFlow AutoDiff allows to compute and manipulate gradients

• There are many autodiff libraries (e.g., PyTorch, Tensorflow, Jax, etc.)
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Want to play ?

y(x0, x1) = (1 + ex0 x1+sin(x0))−1

• Do you recognize a known function ?

• Task: compute ∂y
x0

and ∂y
x1

• Use the two modes of AD

• Solution here
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Weight initialization

• Important Step for optimization


b [l] := b [l] − α

∂J
∂b [l]

W [l] := W [l] − α
∂J
∂W [l]

• W [l] weight matrix of dimension ml ×ml−1 (ml is the size of the layer l)
• b [l] bias vectors odf dimension ml × 1
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General practice

The biases are initialized with 0 and weights are initialized with random
numbers.

What if weights are initialized with 0? or even same constant value

• Consider a neural network with two hidden units
• Initialize the biases to 0 and all the weights to a constant value γ.

• The output of both hidden units will be the same: ReLU(γx1 + γx2).
• Identical influence on the cost function→ identical gradients.
• Makes hidden units symmetrict→ DNN will perform very poorly. Let

plays Initializing neural networks
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Random initialization

• Random initialization: break the symmetry.

• Initializing much high or low value can result in slower optimization.

• General practice: randomly gerenated from standard normal
distribution.

• However, while working with a (deep) network can potentially lead to
2 issues:

• vanishing gradients
• exploding gradients.
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Vanishing gradients

• For any activation function, | ∂J
∂W [l] | will get smaller and smaller as we

go backwards with every layer during back propagation.

• The earlier layers are the slowest to train in such a case.

• Thus, the update is minor and results in slower convergence. This
makes the optimization of the loss function slow.

• In the worst case, this may completely stop the neural network from
training further.

• For sigmoid(z) and tanh(z), if your weights are large, then the
gradient will be vanishingly small, effectively preventing the weights
from changing their value.

• With ReLU(z) vanishing gradients are generally not a problem as the
gradient is 0 for negative (and zero) inputs and 1 for positive inputs_
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Exploding gradients

• This is the exact opposite of vanishing gradients.

• Consider you have non-negative and large weights and small
activations.

• When these weights are multiplied along the layers, they cause a
large change in the cost. Thus, the gradients are also going to be
large.

• Thus the changes in W [l] will be in huge steps.

• Might result in oscillating around the minima or even overshooting the
optimum again and again and the model will never learn!

• Another impact huge values of the gradients may cause number
overflow resulting in incorrect computations or introductions of
NaN’s.
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Solution

• For networks not too deep: ReLU or leaky RELU activation functions are
relatively robust to the vanishing/exploding gradient issue.

• leaky RELU never has 0 gradient→ never die, training continues.

• For DNN, heuristic to initialize the weights are generally used:

• The most common practice is to draw the element of the matrix W [l]

from normal distribution with variance k/ml−1, where k depends on the
activation function.

• for ReLU activation: k = 2

• for tanh activation: k = 1. The heuristic is called Xavier initialization. It
is similar to the previous one, except that k is 1 instead of 2.

• Another commonly used heuristic is to draw from normal distribution
with variance 2/(ml−1 + ml)

• The bias terms can be safely initialized to 0 as the gradients with respect to
bias depend only on the linear activation of that layer, and not on the
gradients of the deeper layers.
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Approximation Properties of Multilayer Perceptrons

58



Universal Approximation Theorems

Universal approximators
A two-layer network with linear outputs can uniformly approximate any
continuous function on a compact input domain to arbitrary accuracy.

• This result holds if the activation function is not a polynomial (i.e. tanh,
logistic, and ReLU all works as do sin,cos, exp, etc.)

• See M. Leshno, et al (1991). Multilayer feedforward networks with
non-polynomial activation function can approximate any
function,Neural Networks, vol. 6, pp. 861–867, 1993.
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Example: Approximation Ability

f (x) = |x |:

• 50 data points in [−1, 1]
• two layers (1 hidden Layer), linear activation (output layer)
• 3 hidden units; tanh activation functions

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3 60



Example: Approximation Ability

f (x) = x2:

• 50 data points in [−1, 1]
• two layers (1 hidden Layer), linear activation (output layer)
• 3 hidden units; tanh activation functions

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3 61



Example: Approximation Ability

f (x) = sin(x):

• 50 data points in [−1, 1]
• two layers (1 hidden Layer), linear activation (output layer)
• 3 hidden units; tanh activation functions

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3 62



Example: Approximation Ability

f (x) = |x |:

• 50 data points in [−1, 1]
• two layers (1 hidden Layer), linear activation (output layer)
• 3 hidden units; tanh activation functions

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3 63



Example: Approximation Ability

f (x) = 1{x>0}:

• 50 data points in [−1, 1]
• two layers (1 hidden Layer), linear activation (output layer)
• 3 hidden units; tanh activation functions

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3 64



Universal Approximation

Leshno and Schocken (1993) showed:

• Let ψ(·) be any non-polynomial function (an activation function).

• Let define f : K −→ < be any continuous function on a compact set
K ⊂ <m

• ∀ε > 0, there exists an integer N (the number of hidden units), and
parameters vi , bi ∈ < such that the function

F(x) =
N∑

i=1

viψ(wT
i x + bi)

satisfies |F(x) − f (x)| > ε for all x ∈ K .
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Why deep Neural network ?

Continuous multiplication gate Henry W. Lin and Max Tegmark. (2016)
Why does deep and cheap learning work so well?:

Continuous multiplication gate
A neural network with only four hidden units can model multiplication of
two numbers arbitrarily well.

• With µ = 1
4λ2f ′′ (0) then ŷ → x1 × x2 when λ→ 0
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Regression example

• input: x ∈ R1000

• Output: y ∈ <

Aim build a model for representing a quadratic relation between x and y

ŷ = w1,1x1x1 + w1,2x1x2 + . . . + w1000,1000x1000x1000 = wT x̃

where
x̃ = (x1x1, x1x2, . . . , x1000x1000)T

and
w = (w1,1,w1,2, . . . ,w1000,1000)T

which requires ≈ 1,000×1,000
2 = 500, 000 parameters.
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Quadratic model

• input: x ∈ R1000

• Output: y ∈ <

Aim build a model for representing a quadratic relation between x and y

Neural network

All products (interaction) with a neural network requires:
4 × 500, 000 = 2 × 106 hidden units and so 2 billion parameters

1000 × (2 × 106) + 2 × 106 parameters
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Quadratic model with regression

• input: x ∈ R1000

• Output: y ∈ <

Aim build a model for representing a quadratic relation between x and y

• Consider that only 10 of the regressors xixj are of importance

ŷ = w1,1x1x1 + w1,2x1x2 + . . . + w1000,1000x1000x1000 = wT x̃

where
x̃ = (x1x1, x1x2, . . . , x1000x1000)T

and
w = (w1,1,w1,2, . . . ,w1000,1000)T

which still requires ≈ 1,000×1,000
2 = 500, 000 parameters.
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Why Neural network ?

• input: x ∈ R1000

• Output: y ∈ <

Aim build a model for representing a quadratic relation between x and y

• Consider that only 10 of the regressors xixj are of importance
• Neural Network: for 10 products with NN −→ 4 × 10 hidden units
−→ 40, 000 parameters

1000 × 40 + 40 = 40, 040 parameters
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Why deep Neural network ?

• Higher complexity model: polynomials of degree 1000
• Keep 250 products in each layer→ 250 × 4 = 1, 000 hidden units.

Linear regression would require ≈ 10001000

1000!
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Take Home Message

• Automatic Differentation

• Weight Initialization

• Forward mode AD

• Universal approximation theorem
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Overfitting

How our model will generalize to new samples that we didn’t use to train

Solution to quantify the true generalization error is to split the data:

• First version: holdout cross-validation

• Second version: K-fold cross-validation
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Overfitting for Neural network

• Might need a very large network to represent a function

• Neural Network: can learn any function !!

• OVERFITTING is a serious concern

• Solution: Training/validation/test, k-fold cross-validation, dropout,
regularisation
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Example: curve fitting

• N = 10 points from true function f (x) = sin(2πx)
• added noise
• Task: fit a polynomial model of degree M ∈ {0, . . . , 9}
• Evaluate RMSE on test data

From Bishop’s Pattern Recognition and Machine Learning
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Example: curve fitting

• M = 3 looks good
• M = 9 overfit ?

From Bishop’s Pattern Recognition and Machine Learning
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Example: curve fitting

• RMSE on train
• RMSE on test (100 points generated from same process)

From Bishop’s Pattern Recognition and Machine Learning
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Example: curve fitting

• over-fitting problem become less severe as the size of the data set
increases.

From Bishop’s Pattern Recognition and Machine Learning
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Early stopping

• Early stopping: stopping training early since overfitting typically
increases as training progresses.

• keras offers patience parameter. Interrupts training when accuracy
has stopped improving for more than k epochs.
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Example in Action

• Demo on housing dataset

• More during tutorial
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Split Data for Neural Network

How the data are split for Neural Network ?

• Training Data: used for Training models

• Validation Data: used for optimizing hyperparameters, choosing
between models

• Test Data: for evaluating the performance of the final model
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Overfitting: Regularization

• Regularization: process to improve generalization, restrict the
flexibility of the model to prevent overfitting

• Example: Ridge Regression

• Principle: add Prior R(θ) in training objective: J(θ) + λR(θ)

• Gradient descent update to minimize J(θ) : θ ← θ − α ∂J
∂θ

• The gradient descent update to minimize the L2 regularized cost
J(θ) + λR(θ) results in weight decay:

θ ← θ − α
∂(J + λR)

∂θ

= θ − α

(
∂J
∂θ

+ λ
∂R
∂θ

)
= θ − α

(
∂J
∂θ

+ λθ
)

= (1 − αλ)θ − α
∂J
∂θ
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Overfitting: Regularization

• Lasso penalty: L1 norm, λ1
∑d

i |wi |

• Ridge penalty: L2 norm, λ2
∑d

i w2
i

• elastic net penalty: combine L1 and L2 norms

• Different weight regularization could be added to different layers
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Regularization: Dropout

Dropout is a popular and efficient regularization technique.

• Srivastava, Nitish et al. (2014). “Dropout: A simple way to prevent
neural networks from overfitting”. In: The Journal of Machine
Learning Research 15.1, pp. 1929-1958.

Consider the following network to be trained
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Regularization: Dropout

- Dropout is a regularization technique where
we during training randomly drop units.

- The term dropout refers to dropping out
units (hidden and visible) in a neural
network.

- By dropping a unit out, meaning temporarily
removed it from the network, along with all
its incoming and outgoing connections.

- The choice of which units to drop is
random.
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Dropout: principle

• 1st iteration: Keep and update each unit with probability p, drop
remanding ones

• 2st iteration: Keep and update another random selection of units,
drop remanding units.

• tth iter Continue in the same manner.
• Test time Use all units. Weight multiplied by p.
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Why does this avoid overfitting?

Dropout can be viewed as an ensemble member with two clever
approximations.

Ensemble methods principle: exploit multiple learning models to obtain
better predictive performance than could be obtained from any of the
contributing models.

1) For a neural network with M units there are 2M possible thinned
neural networks. Consider this as our ensamble.

• Approximation 1: At each iteration we sample one ensemble
member and update it. Most of the networks will never be updated
since 2M >> the number of iterations.
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Why does this avoid overfitting?

2) At test time we would need to average over all 2M which is not
feasible when 2M is huge.

• Approximation 2: Instead, at test time we evaluate the full neural
network where the weight are multiplied by p.

It has been empirically shown that this is a good approximation of the
average of all ensemble members.
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Dropout: Implementation

• Current implementation: scale factor p during training and testing

• Advantage: no need to remember at test time which p we used for
training
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Reminder of Biais-variance decomposition

• Consider the true model y = f (x) + ε

• Let ŷ = ŷ(x∗;DT ) the prediction for the input sample x∗ using the train
dataset DT

• Task: Decomposition of expected mean square error of ŷ

EDT [(̂y − y)2] =

=

=

= EDT [(̂y − EDT [̂y])2]︸                  ︷︷                  ︸
variance

+ (EDT [̂y] − f )2︸          ︷︷          ︸
Bias2

+ EDT [ε2]︸  ︷︷  ︸
Irreducible error

Decomposition for a specific input sample x∗.
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Reminder of Biais-variance decomposition

Need average over all test samples

E∗[EDT [(̂y − y)2]]︸                ︷︷                ︸
Expected MSE

average over test sample

= E∗[EDT [(̂y − EDT [̂y])2]]︸                       ︷︷                       ︸
Variance

average over test sample

+ E∗[(EDT ([̂y] − f )2]︸                ︷︷                ︸
Bias2

average over test sample

+ σ2︸︷︷︸
Irreducible error

• Biais: your model cannot represent the true model f −→ red{Low
model complexity}

• Variance: Part of the MSE due to the variance in the training set,
sensitivity of your model to the training data red{High model
complexity}
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Practice to track Biais and Variance

• Compare Training data error and test data error

• Bias is related to training error

• variance is related to the difference betwen test error and training
error

• Short practice during our tutorial on MNIST data
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Enesemble Methods: principle

• Let ŷ1, . . . , ŷB be predictions from B different models

• ŷ1, . . . , ŷB are identically distributed (might be not independent)

• E [̂yi ] = µ, Var [̂yi ] = σ2, cor [̂yi , ŷj ] = %

E

 1
B

B∑
i=1

ŷi

 = µ, and Var

 1
B

B∑
i=1

ŷi

 =
1 − %

B
σ2 + %σ2

-

Conclusion Model averaging does not affect bias but reduces variance
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Bagging, Bootstrap aggregating

Aim: produces different prediction from models trained on different training
dataset

• IMPOSSIBLE: only one training dataset

• SOLUTION: Bootstrap your training data to mimic different dataset

• sample data with replacement

• Train a model on each of the rseampled data sets.

• Average their predictions
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Difference between Bagging and Dropout

• Bagging all models are their own parameters while in dropout the
different models (the sub-networks) share parameters.

• Bagging all models trained until convergence while dropout each
sub-network is only trained for a singe gradient step.

• Bagging are trained on bootstrapped version of the whole data set
while dropout sub-model is trained on randomly mini-batach of the
data

Both Bagging and dropout are used to avoid overfitting and reduce the
variance of the model
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Batch Nomalization Normalizing inputs to speed up learning

• Compute mean and variance of training data

µj =
1
m

m∑
i=1

x [i]
j , σ2

j =
1
m

m∑
i=1

(x [i]
j − µj)2

• Normalize

x̃ [i]
j =

x [i]
j − µj

σj

- µj and σ2
j are used to normalize validation/test data.
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Why normalized the inputs data

-If inputs x1 and x2 are not normalized→ cost function considered as
unormalized→ slower convergence.
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Batch Normalization on each mini-batch

• Nomalized the inputs of each layer: Batch Normalization (BN).

• Introduced in 2015 and it is one of the most efficient techniques for
training deep neural networks.

• BN: enables to use higher learning rate without getting issues with
vanishing or exploding gradients.

• BN: slight regularization effect.
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Batch Normalization on each mini-batch

• Compute mean and variance for every unit j in all layers l

µ
(l)
j =

1
mbatch

mbatch∑
i=1

z(l)[i]
j , (σ(l)

j )2 =
1
m

m∑
i=1

(z(l)[i]
j − µ

(l)
j )2

where z(l)[i]
j is the hidden unit before the activation

• Normalize every unit j in all layers l

z̄[i]
j =

z(l)[i]
j − µ

(l)
j√

(σ(l)
j )2 + ε

• Scale and shift every unit

z̃[i]
j = γ(l)

j z̄[i]
j + β(l)

j

where γ(l
l and β(l)

j are learned parameters ( called batch normalization layer
) that allow the new variable to have any mean and standard deviation.
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Reading to understand: Why batch normalization ?

• The motivation of the prinsep paper is based on internal covariante
shift: Ioffe, Sergey, and Christian Szegedy. “Batch Normalization:
Accelerating Deep Network Training by reducing Internal Covariate
Shift.” International Conference on Machine Learning. 2015.

• It has been recently shown that it makes the loss landscape more
smooth and easier to optimize: Santurkar, Shibani, et al. ”How does
batch normalization help optimization?.” Advances in Neural
Information Processing Systems. 2018.
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Take Home Message

• Overfitting

• Dropout

• Regularization

• Batch Normalization

• Bagging
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Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical
biophysics 5.4 (1943), pp. 115–133.
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