
At the moment we use a significant number of figures and illustrations created by other authors. 
We have attempted to properly attribute all such usage of figures and illustrations. 
In cases where omissions are present, please accept our apology beforehand and we will rectify ASAP

The Mathemmatical Engineering
of Deep Learning
Chapter 6 - Lecture 6

B. Liquet1,2 and S. Moka3 and Y. Nazarathy3

1 Macquarie University 2 LMAP, Université de Pau et des Pays de L’Adour’ 3 The University of Queensland

1



Outline of Lecture

• Hyper-parameters

• Bayesian Optimization

• Transfer Learning

• Data augmentation

• Imbalanced case

2



Hyper-parameter in Deep Learning

• Performance of Deep learning is depending on meta-parameters that
have to be tuned with care

• These parameters are known as hyper-parameters or system
parameters and are tuned by human experts.

3



Hyper-parameter in Deep Learning

Hyper-parameters in Deep Learning are crucial for defining your model
and to control the success of the training process of the defined model.
Two group of hyper-parameters:

• Hyper-parameters for controlling the Optimization process:
Optimizer hyper-parameters

• Hyper-parameters for defining the model: Model Specific
hyper-parameters

4



Model Hyperparameters

Parameters related to the architecture:

• Number of hidden units: related to the capacity to learn any function.

• Number of layers: Increasing the number of layer for shallow network
improves generally the performance

• Activation functions: ReLu activation function is becoming the most
used as is less computationally expensive than tanh and sigmoid.

• For classification task: Question for you ?

• For regression task: Question for you ?

• Drawback of ReLu function : Question for you ?

5



Some Heuristics

"Heuristics 1: Simple first"

“A popular heuristic is to incrementally build a more complex model. This
means for example to try first a model with only one or two hidden layers
and expand the network if the simple model fails.”

"Heuristics 2: Increases number of neurons first"

“A second heuristic is to increase first the number of hidden neurons before
trying to increase the number of hidden layers when your model perform
poorly. Indeed it is less computational expensive to doubling the size of a
hidden layer than doubling the number of hidden layer.”

6



Optimizer hyper-parameters

Parameters related to the optimization process

• Learning rate
• Mini-Batch size
• Number of Epochs
• weight decay
• and more . . .

7



Reminder: Split Data for Neural Network

How the data are split for Neural Network ?

• Training Data: used for Training models

• Validation Data: used for optimizing hyperparameters, choosing
between models

• Test Data: for evaluating the performance of the final model

IMPORTANT: Validation data and test data should come from the same
distribution

8



Calibration of the learning rate

• not recommended to use a constant learning rate.

• learning rate to decay over time:

• exponential decay: αt = α0 exp (−k × t)

• Inverse decay: αt = α0
1+k×t

where α0 initial learning rate, k controls the rate of the decay which will
decrease at each epoch t .

• Reduce the learning rate by some factor every few epochs: Step
decay.

• Half the learning rate every 5 epochs, or by 0.1 every 20 epochs.
9



Mini-Batch Size

• Mini-Batch size of 1 sample corresponds to the stochastic training

• Mini Batch size of the entire data is the batch training.

• Popular value of the mini batch size is 32.

• It is also well recommended to try subsequent values: 1, 2, 4, 8, 16,
32, 64, 128, 256.

10



Number of Epochs.

• Choice of the number of epochs is driven by the result of the
Validation Error.

• Train the model as long as the validation errors keeps decreasing.
• Early stopping: stopping training early since overfitting typically

increases as training progresses.

• keras offers patience parameter. Interrupts training when accuracy
has stopped improving for more than k epochs.

11



Regularized tuning parameter.

• L2 regularization is the most exploited technique for preventing
overfitting.

• What is the name of this approach ?

L (w, b) +
λ

2
‖w‖2,

where λ is called the weight regularization hyperparameter.

• Small values are generally tried first for controlling the contribution of
each weight to the penalty.

12



Regularized tuning parameter: which values to use ?

• Still reasonable to use the same weight decay at all layers.

• The best value should remain constant throughout the training.

• Consider for this hyperparameter a grid search strategy

• Possible classical choices: 10−3, 10−4, 10−5, and 0.

• From experiments: smaller datasets and architectures seem to
require larger values for weight decay while larger datasets and
deeper architectures seem to require smaller values.

13



Hyper-parameters Optimization procedures

Optimizer hyper-parameters: Learning rate, Mini-Batch size, Number of
Epochs, weight decay, and more . . .

The three main techniques for finding optimal values:

• Grid Search

• Random Search

• Bayesian Optimization

14



Two populars approaches

Illustration from [Bergstra and Bengio, 2012]

• Exhaustive search on a regular or random grid

• Complexity is exponential in the number of hyper-parameters

• Easy to parallelise

• Bergstra and Bengio in Random Search for Hyper-Parameter
Optimization mentioned that “randomly chosen trials are more
efficient for hyper-parameter optimization than trials on a grid” 15

https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf


Bayesian Optimisation

• An alternative which is becoming widely used is the Bayesian
Optimization techniques.

• Main idea of using a Bayesian approach is to pay attention to past
results for exploring a better region.

• The actual function f (θ) we are trying to optimize (function of
hyper-parameters) is really complicated.

• Cost function: J(w, b; θ) where here θ includes all the hyper-parameters

16



Bayesian Optimization: Methodology

Let consider f : X → < where X ⊆ <d a bounded domain.

We want to solve this optimization problem

x∗ = arg min
x∈X

f (x)

• Input x a configuration of hyper-parameters
• Function value f (x): error on the validation set
• Each evaluation is expensive

17



Where would you try next?

• Builds a probabilistic model (called surrogate model) of the
objective function:
• Optimises a “proxy” instead the objective
• Models the uncertainty Gaussian Process

• Combine prior and the likelihood to get a posterior measure given
some observation

• Use the posterior to decide where to take the next evaluation
according to acquisitions functions

18



Pobabilistic surrogate model

Popular surrogate model: Gaussian process

• allows to predict f
• quantify our uncertainty in prediction using probability distribution

A Gaussian process is a distribution over functions.

• For any set of points {x (1), . . . , x (m)}, the functions evaluation
{y1, . . . , ym} are distributed


y1
...

ym

 ∼ Norm



m(x (1))

...

m(x (1))

 ,

k (x (1), x (1)) . . . k (x (1), x (m))

...
. . .

...

k (x (m), x (1)) . . . k (x (m), x (m))




m(x) = E(f (x)) is the mean function and k (x, x
′

) is the covariance function.

19



Gaussian Process

A popular choice: exponentiated quadratic kernel (with ` = 1 and σ = 1)

k [θ, θ′] = σ2exp
[
−

1
2`2

(θ − θ′)T (θ − θ′)
]
.

−→ a smooth prior on functions sampled from the Gaussian process.

20



Prediction

Goal: make prediction about the function value at a new point x∗ given
some observations of f at m points f = (f [x(1)], f [x2], . . . , f [xm]).

• Property of the GP: this new function value f ∗ = f (x∗) is jointly
normally distributed with the observations f:

Pr
 ff ∗
 = Norm

m(X)
m(x∗)

 , K[X, x∗] K[X, x∗]
K[x∗,X] K[x∗, x∗]

 ,
Why is usefull ?

• Can derive the distribution of Pr(f ∗|f )
• Get the distribution of the function at any new point x∗

21



\

Illustration from Tutorial on Bayesian optimization

Let play with Gaussian Processes here
22

https://www.borealisai.com/en/blog/tutorial-8-bayesian-optimization/
https://distill.pub/2019/visual-exploration-gaussian-processes/


Features of Gaussian Process

• Gaussian processes are probability distributions over functions.

• The choice of kernel affects the smoothness of the functions sampled
from a Gaussian process.

• The multivariate normal distribution has analytic conditional and
marginal distributions.

• We can compute the mean and standard deviation of our prediction of
an objective function at a particular design point given a set of past
evaluations.

• We can fit the parameters of a Gaussian process using maximum
likelihood

23



Where would you try next?

24



Bayesian Optimization: Intuition

25



Bayesian Optimization: Intuition

26



Bayesian Optimization: Intuition

27



Bayesian Optimization: Intuition

28



Bayesian Optimization: Intuition

29



Bayesian Optimization: Intuition

30



Bayesian Optimization: Acquisition function

How to choose the next point ?

• acquisition function indicates how promising a new candidate it is.

• acquisition function balance the Exploration and Exploitation factors
to determine where to evaluate next.

• Exploration function: Evaluate in places where the variance is large

• Exploitation function: Evaluate in place where the mean is low.

31



Bayesian Optimization: Acquisition function

Procedure:

• Evaluate all candidates according to an acquisition function
• Rank them and pick the best one

Popular acquisition functions:

• Maximum Probability of Improvement (MPI)

• Expected Improvement (EI)

• Upper Confidence Bound (UCB)

• Thompson sampling, entropy search, . . .

32



Acquisition function: Expected Improvement

Expected Improvement (EI) which is the popular one:

EI(θ) = E[max{0, f (̂θ) − f (θ)}],

where f (̂θ) is the current optimal set of hyper-parameters.

• “if the new value is much better, we win by a lot; if it’s much worse, we
haven’t lost anything”

• There is an explicit formula for Expected Improvement (EI) under
the Gaussian Process model.

Try to derive it !!!

33



Bayesian Optimization: Intuition

34



Bayesian Optimization: Intuition

35



Bayesian Optimization: Intuition

36



Bayesian Optimization: Intuition

37



Bayesian Optimization: Intuition

38



Bayesian Optimization: Intuition

39



Bayesian Optimization: Intuition

40



Bayesian Optimization: Intuition

41



Bayesian Optimization: summary

The main steps of the algorithm:

• Surrogate model of f which is cheaper to evaluate

• Set of evaluated candidates.

For t = 1, 2, . . . repeat:

1. Find the next sampling point θt by optimizing the acquisition function
over the GP:

θt = argmaxθ EI(θ|D1:t−1),

where D1:t−1 = (θ1, y1), . . . , (θt−1, yt−1)

2. Compute exact loss
yt = f (θt )

from the objective function f .

3. Add the sample to previous samples D1:t = D1:t−1, (θt , yt ).

4. Update the GP.
42



Conclusion

• Empirically Bayesian Optimization has been demonstrated to get
better results using in fewer experiments, compared with grid search
and random search.

• You can explore:

1. tutorial on Bayesian Optimization

2. tutorial on Bayesian Optimization in R

3. video from Javier Gonzalez

4. R package GPfit for fitting a gaussian process (JSS 2015 paper, Vol
64)

43

https://www.borealisai.com/en/blog/tutorial-8-bayesian-optimization/
https://bearloga.github.io/bayesopt-tutorial-r/
http://javiergonzalezh.github.io/talks.html


Multitask learning

Multitask learning: train a network for solving multiple tasks.

• Different tasks benefit from having shared lower-level features

• Can be seen as a regularization (in comparison to training the task
separately)

Figure from An Overview of Multi-Task Learning in Deep Neural Networks

44

https://arxiv.org/pdf/1706.05098.pdf


Multitask learning

Multi-task learning: Solving multiple learning tasks at the same time
(usually by defining a multitask loss), while exploiting commonalities and
differences across tasks

• Example: Segmentation, object detection, . . . see an overview
multi-task learning

45

https://watermark.silverchair.com/nwx105.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAqwwggKoBgkqhkiG9w0BBwagggKZMIIClQIBADCCAo4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQM8aEWOK_1YqnrUpXjAgEQgIICX7G4lBl4EEgSaOqO7XDnKqIh67Hu8XCHXLtQQ-z5U_DZ914Rhua5XZxrCgmIbkrZ0er3YfOfFAbk5xQiDpmpwao9mf4iASiV2QFbYleonag2MTuQdX4hSWwZmkEFjCbS-LD7ZKQePLm8BqiMyQK4gsnmYOQIgAjaBFYExPhRm4PGwHCsEUEG-gQwsEqNURYVzTpPhy9ywDT82TQUwNm21NVfnAdyX9VJJWCDpT3elxbLLAyBd8THYc3bUIAv_2t7BFsykxMe4zshFFXKKQL4c9k9jLWepDJKLln1t-sIkbWguX7sdPniKja3tZtXPI8gCFF-gq_VN4Ufk0fZldb3TXnJlECUaHr6XCsB_X8YSqda2IJNWXnhB04Ffu13Ym719v5HqtzK0nfn7ySV-2t2tV0GwRYQiAAhXaS5ZK1ZELrwXc27pPmYWsHwdW1aXyt1UffsedYqnQ8hNoSNkphHsT3KHt8AVnIpAlsQb3nkvIrLlRisOh1ev-UTFoRRbtwC6JvjHbvqABb1MgZnQDoBel9Pw20TFRh9kwR5DTcF4mIXQro_XRvPWVyuy15u_GxUsmbauo51yREUd_S3GMKvXs5gh91mZ2xOXqUo7DvPvwkv_I0K-xldPhhh-wEGzrCxfhwko2J0Yf5GRqAvG2pWXuCST5z443MYji7Jli0IiDhqPBpLMVOazNPPGhyFylnE3CY10QFXSQ9edJ4qe8qvoMFrM03-1E_ZwIAW5a2eApyMhST6GMkgBfww90ZIjVCU-O3Tn8un0BjmPBmRYlZwAsE-OL_YdadcEG36ULM_E-k
https://watermark.silverchair.com/nwx105.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAqwwggKoBgkqhkiG9w0BBwagggKZMIIClQIBADCCAo4GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQM8aEWOK_1YqnrUpXjAgEQgIICX7G4lBl4EEgSaOqO7XDnKqIh67Hu8XCHXLtQQ-z5U_DZ914Rhua5XZxrCgmIbkrZ0er3YfOfFAbk5xQiDpmpwao9mf4iASiV2QFbYleonag2MTuQdX4hSWwZmkEFjCbS-LD7ZKQePLm8BqiMyQK4gsnmYOQIgAjaBFYExPhRm4PGwHCsEUEG-gQwsEqNURYVzTpPhy9ywDT82TQUwNm21NVfnAdyX9VJJWCDpT3elxbLLAyBd8THYc3bUIAv_2t7BFsykxMe4zshFFXKKQL4c9k9jLWepDJKLln1t-sIkbWguX7sdPniKja3tZtXPI8gCFF-gq_VN4Ufk0fZldb3TXnJlECUaHr6XCsB_X8YSqda2IJNWXnhB04Ffu13Ym719v5HqtzK0nfn7ySV-2t2tV0GwRYQiAAhXaS5ZK1ZELrwXc27pPmYWsHwdW1aXyt1UffsedYqnQ8hNoSNkphHsT3KHt8AVnIpAlsQb3nkvIrLlRisOh1ev-UTFoRRbtwC6JvjHbvqABb1MgZnQDoBel9Pw20TFRh9kwR5DTcF4mIXQro_XRvPWVyuy15u_GxUsmbauo51yREUd_S3GMKvXs5gh91mZ2xOXqUo7DvPvwkv_I0K-xldPhhh-wEGzrCxfhwko2J0Yf5GRqAvG2pWXuCST5z443MYji7Jli0IiDhqPBpLMVOazNPPGhyFylnE3CY10QFXSQ9edJ4qe8qvoMFrM03-1E_ZwIAW5a2eApyMhST6GMkgBfww90ZIjVCU-O3Tn8un0BjmPBmRYlZwAsE-OL_YdadcEG36ULM_E-k


Transfer learning

transfer learning: reuse models that have been trained on a different task
than the one we are interested in

46



Transfer learning

transfer learning: reuse models that have been trained on a different task
than the one we are interested in

• Train only last layer or fine-tune the whole network.

• Low level features from Task A helpful for solving Task B

Transfer learning applicable when: - Task A and Task B have same input x -
We have a lot more data for task A than for task B

47



Transfer learning: Main points

• Pick up a model “off the shelf”→ adapt it to your target task.

• Take a model that has been already trained for one task (e.g., for
classiying object) and then fine-tune it to accomplish another but
relevant task.

• Largely exploited in computer vision-related tasks:
• features learned from very large image sets, such as the ImageNet, are

highly transferable to a variety of image recognition tasks.

48



How to transfer knowledge from one model to another?.

• Feature extractor:
• Chop off the top layer of the already trained model and replace it with a

randomly initialized one.
• Train the weight parameters only in the top layer for the new task, while

all other weight parameters remain fixed (frozen).
• Adopted when your data and the task are similar to the data and the

task of the original pre-trained model.

49



Fine tuning

• Exploit a “good” source model and then construct your target
model by replicating all architecture and parameters from the source
model, except the output layer.

• All parameters are fine-tuned on the target dataset.
• Only the output layer of the target model needs to be trained from

scratch
• It can be viewed as a warm start which will speed up the

convergence.

50



Fine-Tuning and/or Freeze

• CNN tend to learn edges, textures, and patterns in the first layers.

• The initial layers tend to capture generic features, while the later ones
focus more on the specific task at hand.

• Generic feature extractors can be used in many different types of
settings.

• Closer we get to the output, the more specific features the layers tend
to learn, such as object parts and objects.

51



Fine-Tuning and/or Freeze

• Transfer all layers except the top layer or only transfer the first n
layers.

• Only freeze the first layer of the pre-trained model and fine tune the
subsequent layers.

52



Tutorial on Transfer Learning

• Simple tutorial using Keras here

53

https://tensorflow.rstudio.com/tutorials/advanced/images/transfer-learning-hub/


Unsupervised domain adaptation

Unsupervised Domain Adaptation is a learning framework to transfer
knowledge learned from source domains with a large number of
annotated training examples to target domains with unlabeled data only.

• Proposed by Yaroslav Ganin and Victor Lempitsky for Unsupervised
Domain Adaptation by Backpropagation

54

http://proceedings.mlr.press/v37/ganin15.pdf
http://proceedings.mlr.press/v37/ganin15.pdf


The proposed approach is based on three components:

• Feature Extractor component is exploited. It will learn to perform the
transformation on the source and target distribution

• Label Classifier component will learn to perform classification on
the transformed source distribution. Since, source domain is labelled

• Label Domain Classifier component which is a neural network that
will be predicting whether the output of the Feature Extractor is from
is from source distribution or the target distribution.

55



Intuition

• exploit the Label Domain Classifier to get the model to be confused
about the domain meaning to maximize this loss (by reversing the
gradient).

• confuse the Feature Extractor part in order it cannot create features
that allow the domain classifier to work well but it still can create
features that allow the label predictor to perform well

• details in the original paper here
56

http://proceedings.mlr.press/v37/ganin15.pdf


Data augmentation

• Deep learning models usually need a lot of data to be properly
trained.

• Collecting more data reduces variance

• Prevent overfitting

• If we cannot collect more data, we can augment the data we have

57



Image Augmentation for Computer Vision Applications

Simple transformations to the image include:

• geometric transformations such as Flipping, Rotation, Translation,
Cropping, Scaling

• color space transformations such as color casting, Varying
brightness, and noise injection.

• Example using Pytorch here

58

https://d2l.ai/chapter_computer-vision/image-augmentation.html


Image Augmentation for Computer Vision Applications

Figure from Afshine Amidi and Shervine Amidi

59

https://stanford.edu/~shervine


Image Augmentation for Computer Vision Applications

Figure from Afshine Amidi and Shervine Amidi

60

https://stanford.edu/~shervine


Image Augmentation for Computer Vision Applications

• These simple transformations have been largely exploited and shown
improvement of the model for computer vision tasks:

• image classification
• object detection
• segmentation.

• Applicable transformations are problem dependent.

• Be careful not to change correct class!

• For example, vertical flip is not appropriate if you have images of “b”
and “d”

• But they are limited and might not be able to account all the possible
variations.

61



Image Augmentation for Computer Vision Applications

An alternative is to use Deep Neural Network-based methods such as:

• Adversarial Training

• Generative Adversarial Networks (GAN)

• Neural Style Transfer

• See for more details the recent survey on Image Data
Augmentation which illustrates how data augmentation can improve
the performance of deep learning models.

62

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0


Text Augmentation Techniques: Natural Language Processing

Easy Data Augmentation (EDA) for Natural Language Processing
includes:

• Synonym Replacement Examples here

• Random Insertion

• Random swap

• Random deletion

However, such methods can struggle with preserving class labels.

• Recently Wu et al. (2019) have proposed a conditional BERT
(CBERT) model which extends BERT masked language modeling
(MLM) task by considering class labels to predict the masked tokens.

• BERT: Bidirectional Encoder Representations from
Transformers (BERT) is a Transformer-based machine learning
technique for NLP pre-training developed by Google.

63

https://www.mygreatlearning.com/blog/natural-language-processing-tutorial/
https://arxiv.org/abs/1901.11196
https://neptune.ai/blog/data-augmentation-nlp
https://arxiv.org/abs/1812.06705
https://arxiv.org/abs/1810.04805


Choose the good metric

TASK: Classification of skin cancer tumors (based on images)

• Decide between two models A and B to predict
y ∈ {malignant, benign}

Precision Recall
Model A 93% 85%
Model B 86% 95%

• Precision: Of examples classified as malignant, what % are actually
malignant?

• Recall: What % of malignant examples are actually classified as
malignant?

• F1-score: Avarage of P and R : 2
1/P+1/R

What a good evaluation metrics is depends on your problem

64



Changing evaluation metrics

• Metric: Classification error = 1- classification accuracy

• Model A: 5%
• Model B: 8%

• Model A A seems to do better but you prefer model B since it is doing
better on malignant melanoma tumors which you are especially
interested in.

• What to do ?

• Change the metrics

1∑m
i=1 wi

m∑
i=1

wi1{̂yi,yi }
, wi =

 10 if malignant melanoma
1 otherwise

• and/or your validation/test dataset distribution (by including more
malignant melanoma examples).

65



Changing evaluation metrics

• How do we make sure that we train our model towards this metric?

• If we have reweighed the metric, we can do the same for our training
objective.

Metric :=
1∑m

i=1 wi

m∑
i=1

wi1{̂yi,yi }
, Cost Function :=

1∑m
i=1 wi

m∑
i=1

wiL (̂yi , yi)

Key point:

-1 Define your problem by choosing metric and validation/test dataset.

-2 Adapt your learning algorithm to do well on your metric

66



Imbalanced Dataset

Class imbalance problem in multiple areas: telecommunication
managements, bioinformatics, fraud detection, medical diagnosis, . . .

Accuracy is not the good metric to look at: why ?

• A survey on Resampling approach

Drawback
leave out important instances that provide
important differences between the two
classes.

Drawback
lead to model overfitting by introducing
duplicate instances, drawing from a pool
of instances that is already small.

67

https://arxiv.org/pdf/1608.06048.pdf


Hybrid approach

• Combining Oversampling and Undersampling

68



SMOTE (Synthetic Minority Oversampling Technique)

• Creates new instances of the minority class by creating convex
combinations of neighboring instances.

69



Edited Nearest Neighbor (ENN)

Edited Nearest Neighbor undersampling of the majority class is done by
removing points whose class label differs from a majority of its k nearest
neighbor.

• Combine SMOTE and ENN: SMOTE-ENN

• Here a Python Toolbox

70

Imbalanced-learn:%20A%20Python%20Toolbox%20to%20Tackle%20the%20Curse%20of%20Imbalanced%20Datasets%20in%20Machine%20Learning


Imbalanced Dataset

• Other Techniques:
• Data augmentation
• Changing the performance metric: reweighed

71



Take Home Message

• Validation data

• Multitask learning

• Transfer learning

• Bayesian optimization

• Gaussian Process

• Decay step

• Early stopping

• Data augmentation

72


