
At the moment we use a significant number of figures and illustrations created by other authors.
We have attempted to properly attribute all such usage of figures and illustrations.
In cases where omissions are present, please accept our apology beforehand and we will rectify ASAP

The Mathemmatical Engineering
of Deep Learning
Chapter 8 - Lecture 8

B. Liquet1,2 and S. Moka3 and Y. Nazarathy3

1 Macquarie University 2 LMAP, Université de Pau et des Pays de L’Adour’ 3 The University of Queensland

1

Outline of Lecture

• Sequence data

• Recurrent Neural Network (RNN)

• Long Short Term Memory (LSTM)

• Transformers

• Example: Usage of auto-encoders for language translation

2

Introduction of Sequence Models

• Analysis of sequential data: text sentences, time-series and other
discrete sequences data.

• Design to handle sequential information while Convolutional
Neural Network process spatial information.

• Key point: data we are processing are not anymore independently
and identically distributed (i.i.d.) samples and the data carry some
dependency due to the sequential order of the data.

• Sequence Models is very popular:

• speech recognition
• voice recognition
• time series prediction
• natural language processing.

3

Application

• Image Captioning: caption an image by analyzing the present action

• Exploit a CNN to generate a set of candidate words and use a RNN
or LSTM to construct a coherent sentence from the words (see
details here)

4

https://link.springer.com/chapter/10.1007/978-3-030-04780-1_23
https://link.springer.com/chapter/10.1007/978-3-030-04780-1_23

Application

• Time Series: prediction time series problem, e.g., stock market
predictions

5

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180944
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180944

Autoencoders

6

Autoencoders

Autoencoder model balances:

• Sensitive to the inputs enough to accurately build a reconstruction.

• Insensitive enough to the inputs that the model doesn’t simply
memorize or overfit the training data.

7

SVD and PCA

Singular Value Decomposition (SVD)

Singular Value Decomposition, or SVD, is a computational method often
employed to calculate principal components for a dataset. Using SVD to
perform PCA is efficient and numerically robust. (see
https://intoli.com/blog/pca-and-svd/).

Let a matrix M : p × q of rank r :

M = U∆VT =
r∑

l=1

δlulvT
l ,

• U = (ul) : p × p and V = (vl) : q × q are two orthogonal matrices
which contain the normalised left (resp. right) singular vectors

• ∆ = diag(δ1, . . . , δr , 0, . . . , 0): the ordered singular values
δ1 > δ2 > · · · > δr > 0.

8

https://intoli.com/blog/pca-and-svd/

Reduction Dimension using SVD

Eckart-Young (1936) states that the (truncated) SVD of a given matrix
M (of rank r) provides the best reconstitution (in a least squares
sense) of M by a matrix with a lower rank k :

min
A of rank k

‖M − A‖2F =

∥∥∥∥∥∥∥M −
k∑
`=1

δ`u`vT
`

∥∥∥∥∥∥∥
2

F

=
r∑

`=k+1

δ2
` .

9

SVD as a Compression/Dimension Reduction Tool

We start by reading an image and we perform SVDs on this image.
if (!"jpeg" %in% installed.packages())
install.packages("jpeg")

Read image file into an array with three channels

(Red-Green-Blue, RGB)

liquet <- jpeg::readJPEG("liquet.jpeg")
r <- liquet[, , 1] ; g <- liquet[, , 2] ; b <- liquet[, , 3]

Performs full SVD of each channel

liquet.r.svd <- svd(r) ; liquet.g.svd <- svd(g) ;
liquet.b.svd <- svd(b)
rgb.svds <- list(liquet.r.svd, liquet.g.svd, liquet.b.svd)

10

SVD as a Compression/Dimension Reduction Tool

These two functions will be needed to display an image stored in an RGB
array:
Function to display an image stored in an RGB array

plot.image <- function(pic, main = "") {
h <- dim(pic)[1] ; w <- dim(pic)[2]
plot(x = c(0, h), y = c(0, w), type = "n", xlab = "",

ylab = "", main = main)

rasterImage(pic, 0, 0, h, w)
}

11

Function to compress an image via SVD of each channel

compress.image <- function(rgb.svds, nb.comp) {
nb.comp (number of components) should be less than min(dim(img[,,1])),

i.e., 170 here

svd.lower.dim <- lapply(rgb.svds, function(i)
list(d = i$d[1:nb.comp],
u = i$u[, 1:nb.comp],
v = i$v[, 1:nb.comp]))

img <- sapply(svd.lower.dim, function(i) {
img.compressed <- i$u %*% diag(i$d) %*% t(i$v)

}, simplify = 'array')

img[img < 0] <- 0
img[img > 1] <- 1
return(list(img = img, svd.reduced = svd.lower.dim))
}

12

plot side-by-side the original and compressed images now.

par(mfrow = c(1, 2))
plot.image(liquet, "Original image")
p <- 20 ; plot.image(compress.image(rgb.svds, p)$img,

paste("SVD with", p, "components"))

0 50 100 150 200 250

0
50

10
0

15
0

Original image

0 50 100 150 200 250

0
50

10
0

15
0

SVD with 20 components

13

compression ?

As you can see, with 20 components (over 170 maximum), we can still
recognize Benoit!

How much compression did we achieve with 20 components?
object.size(rgb.svds) # Original image

1740920 bytes

object.size(compress.image(rgb.svds, p)$svd.reduced)

207320 bytes

Compressed image

14

Autoencoders and PCA

Link between PCA and Autoencoders

15

https://arxiv.org/abs/1804.10253

Application

• Natural Language Processing: Text mining and Sentiment (e.g.,
Learning word vectors for sentiment analysis)

• Machine Translation: Given an input in one language use sequence
models to translate the input into different languages as output. Here
a recent survey

16

https://dl.acm.org/doi/10.5555/2002472.2002491
https://arxiv.org/pdf/2002.07526.pdf
https://arxiv.org/pdf/2002.07526.pdf

Applications

• Speech recognition: [Deep Recurrent Neural network for speech
recognition]

• DNA sequence analysis: [Recurrent Neural Network for Predicting
Transcription Factor Binding Sites]

• RNN Generated TED Talks [YouTube Link]

• RNN Generated Eminem rapper [RNN Shady}]

• RNN Generated Music [Music Link]

• Music generation [generating classical music using recurrent neural
networks]

17

https://www.cs.toronto.edu/~graves/icassp_2013.pdf
https://www.cs.toronto.edu/~graves/icassp_2013.pdf
https://www.nature.com/articles/s41598-018-33321-1
https://www.nature.com/articles/s41598-018-33321-1
https://www.youtube.com/watch?t=31s&v=-OodHtJ1saY&feature=youtu.be
https://soundcloud.com/mrchrisjohnson/recurrent-neural-shady
https://www.danieldjohnson.com/2015/08/03/composing-music-with-recurrent-neural-networks/
https://www.sciencedirect.com/science/article/pii/S1877050919313444
https://www.sciencedirect.com/science/article/pii/S1877050919313444

Recurrent Neural network

Recurrent Neural Network
RNN is especially designed to deal with sequential data which is not i.i.d.

18

RNN can tackle the following challenges from sequence data:

• to deal with variable-length sequences

• to maintain sequence order

• to keep track of long-term dependencies

• to share parameters across the sequence

19

Graphical Representation of RNN

• Feed forward neural network also called vanilla neural network

• Recurrent Neural Network: an internal loop, a recurrence relation at
every time step to process a sequence of data.

20

Unfold Representation

h<t>︸︷︷︸
cell state

= fW (h<t−1>︸︷︷︸
old state

, x<t>︸︷︷︸
input vector

)

• fW is a function parameterized by the weight W .

• At every time step t the same function fW is used and same set of
weight parameters.

21

Multilayer Layer RNN

22

Weight Matrices parameters in RNN Sequence Modeling Tasks

• x<1>, . . . , x<t−1>, x<t>, x<t+1>, ...x<m>: the input data. In NLP, for
example, the sequence input is a sentence of m words
x<1>, . . . , x<t−1>, x<t>, x<t+1>, ...x<m>.

• x<t> ∈ R|V|: input vector at time t . For example each word x<t> in the
sentence will be input as 1-hot vector of size |V| (whereV is the
vocabulary, |V| the size).

23

Weight Matrices parameters in RNN Sequence Modeling Tasks

24

Different types of Sequence Modeling Tasks

• many-to-one: Sentiment Classification, action prediction (sequence of video
-> action class)

• one-to-many: Image captioning (image -> sequence of words)

• many-to-many: Video Captioning (Sequance of video frames -> Caption)

• many-to-many: Video Classification on frame level

25

How to train a RNN ?

RNN a clearly some nice features:

• can process any length input

• In theory for each time t can use information from many steps back

• Same weights applied on every timestep

However RNN could be very slow to train

• In practice it is difficult to access information from many steps back.

26

Let consider training a RNN for language model example:

• We first have to get access to a big corpus of text which is a sequence of
words x<1>, . . . , x<t−1>, x<t>, x<t+1>, ...x<T>

• Forward pass and compute the output distribution ŷ<t> for every time t :
predicted probability distribution of every word, given words so far

• Compute the Loss fuction on each step t . Here, cross-entropy between
predicted probability distribution ŷ<t> and the true next word y<t> (one-hot for
x̂<t+1>):

L<t>(θ) = CE(y<t>, ŷ<t>) = −
|V |∑
j=1

y<t>
j × log(̂y<t>

j)

27

• Average this to get overall loss for entire training set:

L =
1
T

T∑
t=1

L<t>(θ) = −
1
T

T∑
t=1

|V |∑
j=1

y<t>
j × log(̂y<t>

j)

• Computing the loss and the gradients across entire corpus is too
expensive.

• In practice we use a batch of sentences to compute the loss and
Stochastic Gradient Descent is exploited to compute the gradients for
small chunk of data, and then update.

28

The backpropagation over time as two summations

29

• First summation over L

∂L
∂Whh

=
T∑

j=1

∂L<j>

∂Whh

• Second summations showing that each L<t> depends on the weight
matrices before it:

∂L<t>

∂Whh
=

t∑
k=1

∂L<k>

∂Whh

30

Using the multivariate chain-rule:

∂L<t>

∂Whh
=

t∑
k=1

∂L<t>

∂ŷ<t>

∂ŷ<t>

∂h<t>

∂h<t>

∂h<k>

∂h<k>

∂Whh

• Chain rule differentiation over all hidden layers within [k , t]:

∂h<t>

∂h<k>
=

t∏
j=k+1

∂h<j>

∂h<j−1>
=

t∏
j=k+1

WT
hh × diag[f ′(Whhh<j−1> + Whxx<j>)]

∂h<j>

∂h<j−1>
=

 ∂h<j>

∂h<j−1>
1

, . . . ,
∂h<j>

∂h<j−1>
Dh

 =



∂h<j>
1

∂h<j−1>
1

. . .
∂h<j>

1

∂h<j−1>
Dh

. . .

. . .

. . .

∂h<j>
Dh

∂h<j−1>
1

. . .
∂h<j>

Dh

∂h<j−1>
Dn


• Repeated matrix multiplication is required to get

∂h<t>

∂h<k>
.

• It leads to a vanishing or exploding gradients issues.

31

Vanishing and Exploding gradient

• Remind us that the RNN is based on this recursive relation

h<t> = σ(Whhh<t−1> + Whxx<t>).

Let consider the identity function σ(x) = x:
∂h<t>

∂h<t−1>
= diag(σ

′

(Whhh<t−1> + Whxx<t>))Whh

= IWhh = Whh

The gradient of the loss L<i> on time i, with respect to the hidden state
h<j> on some previous time j (with ` = i − j):

∂L<i>

∂h<j>
=

∂L<i>

∂h<i>

∏
j<t6i

∂h<t>

∂h<t−1>

=
∂L<i>

∂h<i>

∏
j<t6i

Whh =
∂L<i>

∂h<i>
W `

hh

32

Then if Whh is “small”, then this term gets exponentially problematic as `
becomes large.

Indeed, if the weight matrix Whh is diagonalizable:

Whh = Q−1 × ∆ × Q ,

where Q is composed of the eigenvectors and ∆ is a diagonal matrix with
the eigenvalues on the diagonal. Computing the power of Whh is then
given by:

W `
hh = Q−1 × ∆` × Q .

Thus eigenvalues lower than 1 will lead to vanishing gradient while
eigenvalues greater than 1 will lead to exploding gradient.

33

Some Conclusion

• Gradient signal from faraway is lost because it’s much smaller than gradient
signal from close-by.

• weights are updated only with respect to near effects, not long-term effects.

• Example in language modeling, the contribution of faraway words to
predicting the next word at time-step t diminishes when the gradient vanishes
early on.

• The gradient can be viewed as a measure of the effect of the past on the
future. Thus if gradient is small, the model cannot learn this dependency and
the model unable to predict similar long-distance dependencies at test time.

• Exploding gradient is also a big issue for updating the weight and can
cause too big step during the stochastic gradient descent. Moreover, once
the gradient value grows extremely large, it causes an overflow (i.e. NaN).

• A solution to solve the problem of exploding gradients has been first
introduced by Thomas Mikolov who proposed the Gradient clipping: scale
down the gradient before applying an update when the norm of the gradient is
greater than some threshold.

34

Pros and cons

• Advantages
• Possibility of processing input of any length
• Model size not increasing with size of input
• Computation takes into account historical information
• Weights are shared across time

• Drawbacks
• Computation being slow
• Difficulty of accessing information from a long time ago
• Cannot consider any future input for the current state

35

Different acrchitectures

• One-to-many: Ty > 1 and Tx =?

Application: Music generation

36

Different acrchitectures

• Many-to-one: Tx and Ty

Application: Sentiment classification

37

Different acrchitectures

• Many-to-many: $T_{x} $ and $T_y $

Application: Name entity recognition

38

Different acrchitectures

• Many-to-many: Tx and Ty

Application: Machine translation

39

Overview RNN

40

Variant of RNN

• Bidirectional (BRNN)

Popular in speech recognition
41

RNN Gate

a<t> = g1(Waaa<t−1> + Waxx<t> + ba) and y<t> = g2(Wyaa<t> + by)

42

Long Short Term Memory (LSTM)

Why ?

• The AMSI summer school is ??

• Yony grew up in Israel. He loves playing with his kids. He is aslo a
great teacher and colleagues. He is fluent in ???}

43

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM)
• What makes LSTM cell special ?

• How do LSTM cell achieve long term dependency ?

• How does it know what information to keepp ?

• What information to discard from mermory ?

Solution exploiting gates: input, forget and output

44

Difference between RNN and LSTM

• RNN cell: Hidden state ht

• for storing information
• making prediction

• LSTM: Hidden state is broken into two states
• (1) Cell state: called internal memory where all information will be stored
• (2) Hidden state: used for computing the output

45

Long Short Term Memory (LSTM)

• LSTM is used to take into account long-term dependencies and was
introduced by Hochreiter and Schmidhuber in 1997 to offer a solution
to the vanishing gradients problem.

• LSTM models make each node a more complex unit with gates
controlling what information is passed through rather each node being
just a simple RNN cell.

46

https://www.bioinf.jku.at/publications/older/2604.pdf

Main ideas

• At each time t , LSTM provides a hidden state (h(t)) and a cell state
(c(t)) which are both vectors of length n. The cell has the ability to
stores long-term information.

• Further, the LSTM model can erase, write and read information from
the cell.

• Gates are defined to get the ability to selection which information to
either erased, written or read. Gates are vectors of length n. At each
step t the gates can be open (1), closed (0) or somewhere
in-between.

47

From a sequence of inputs x (t), LSTM computes a sequence of hidden
states h(t), and cell state c(t):

• Forget gate: controls what is kept versus forgotten, from previous
cell state

f (t) = σ
(
Wf h(t−1) + Uf x (t) + bf

)
• Input gate: controls what parts of the new cell content are written to

cell

i(t) = σ
(
Wih(t−1) + Uix (t) + bi

)
• Output gate: controls what parts of cell are output to hidden state

o(t) = σ
(
Woh(t−1)) + Uox (t) + bo

)
48

• New cell content: this is the new content to be written to the cell

c̃(t) = tanh
(
Wch(t−1) + Ucx t + bc

)
• cell state: erase (“forget”) some content from last cell state, and write

(“input”) some new cell content

c(t) = f (t) ◦ c(t−1) + i(t) ◦ c̃(t)

• Hidden state: read (“output”) some content from the cell

h(t) = o(t) ◦ tanh c(t)

49

Some Remarks

• LSTM have been largely exploited for handwritting recognition,
speech recognition, machine translation, parsing, image captioning.

• The architecture of LSTM model is especially designed to preserve
information over many timesteps.

• LSTM uses gates to control the flow of information

50

Some Remarks

• Backpropagating from c(t) to c(t−1) is only element-wise multiplication
by the f gate, and there is no matrix multiplication by W .

• The f gate is different at every time step, ranged between 0 and 1 due
to sigmoid property, thus it overcome the issue of multiplying the
same thing over and over again.

• The Backpropagation through time with uninterrupted gradient flow
helps for the vanishing gradient issue even if LSTM does not
guarantee vanishing/exploding gradient issues.

51

LSTM Forward and Backward Pass

A nice visual explanation here

52

http://arunmallya.github.io/writeups/nn/lstm/index.html#/

Gated Recurrent Units (GRU)

• GRU has been proposed by Cho et al. in 2014 as an alternative to the
LSTM.

• There is no cell state and at each times step t . There are an input x (t)

and hidden state h(t).

53

https://arxiv.org/pdf/1406.1078v3.pdf

• Update gate: controls what parts of hidden state are updated vs
preserved

u(t) = σ
(
Wuh(t−1) + Uux (t) + bu

)
• Reset gate: controls what parts of previous hidden state are used to

compute new content

r (t) = σ
(
Wrh(t−1) + Urx (t) + bu

)
• New hidden state content: reset gate selects useful parts of

previous hidden state. Use this and current input to compute new
hidden content.

h̃(t) = tanh
(
Wr (r t ◦ h(t−1)) + Uhx (t) + bh

)
54

• Hidden state: update gate simultaneously controls what is kept from
previous hidden state, and what is updated to new hidden state
content

h(t) = (1 − u(t)) ◦ h(t−1) + u(t) ◦ h̃(t)

• Comparison of LSTM and GRU models (Jozefowicz et al 2015)

55

http://proceedings.mlr.press/v37/jozefowicz15.pdf

Auto-encoders for language translation

Machine translation (MT) is one of the main active research area in
Natural Language Processing (NLP).

• The goal is to provide a fast and reliable computer program that
translates a text in one language (source) into another language (the
target)

Using neural network model, the main architecture used for MT is the
encoder–decoder model:

• encoder part which summarizes the information in the source
sentence

• decoder part based on the encoding, generate the target-language
output in a step-by-step fashion

56

Question for you

• Consider the problem of translation of English to French

• E.g. What is your name = Commet tu t’appelle

• Is this archiceture suitable for this problem ?

57

Tentative solution

58

• encoder part which summarizes the information in the source
sentence

• decoder part based on the encoding, generate the target-language
output in a step-by-step fashion

• Introduced by Cho et al. (2014).

• A variant called sequence-to-sequence model has been introduced
by Sutskever et al., (2014)

59

https://www.aclweb.org/anthology/D14-1179.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

Cho’s model

Principle: the encoder and decoder are both GRUs. The final state of the
encoder is used as the summary c and then this summary is accessed by
all steps in the decoder

60

Sutskever’s model

Principle. In this model the encoder and decoder are multilayered
LSTMs. The final state of the encoder becomes the initial state of the
decoder. So the source sentence has to be reversed.

61

Improvement with Attention layer

• Limitation of these models are exposed in the paper "On the Properties of
Neural MachineTranslation...". They showed that the performance of the
encoder-decoder network degrades rapidly as the length of the input
sentence increases.

• Main drawback of the previous models is that the encoded vector need to
capture the entire phrase (sentence) and might skipped many important
details. Moreover the information needs to “flow” through many RNN steps
which is quite difficult for long sentence.

62

https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1409.1259

• Bahdanau et al. (2015) have proposed to include attention layer
which consist to include attention mechanisms to give more
importance to some of the input words compared to others while
translating the sentence.

• A survey of the different implementations of attention model is
presented by Galassi et al. (2019)

63

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1902.02181

Transformer

Recently, Vaswani et al., 2017) offered a kind of revolution for Machine
translation architecture: "Attention is all you need".

This architecture is called the transformer which offers encoder-decoder
structure that uses attention for information flow.

64

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Further reading for MT

• Understand attention concept

• Understand attention interface

• A comprehensive illustration of the transformer

• Chen et al. (2018) who compared several types of recent MT models

• A comprehensive PyTorch-based seq2seq tutorial by Joost
Bastings:The Annotated Encoder–Decoder with Attention

65

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://distill.pub/2016/augmented-rnns/#attentional-interfaces
http://jalammar.github.io/illustrated-transformer/
https://www.aclweb.org/anthology/P18-1008.pdf
https://bastings.github.io/annotated_encoder_decoder/

Take Home Message

• Why RNN ?

• LSTM

• Backpropagation through time

• Attention layer

• Auto-Encoder

• GRU

66

